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FOREWORD 
Since its establishment in 1976, Acharya Nagarjuna University has been forging 

ahead in the path of progress and dynamism, offering a variety of courses and research 

contributions. I am extremely happy that by gaining ‘A+’ grade from the NAAC in the 

year 2024, Acharya Nagarjuna University is offering educational opportunities at the UG, 

PG levels apart from research degrees to students from over 221 affiliated colleges spread 

over the two districts of Guntur and Prakasam. 

The University has also started the Centre for Distance Education in 2003-04 with 

the aim of taking higher education to the doorstep of all the sectors of the society. The 

centre will be a great help to those who cannot join in colleges, those who cannot afford 

the exorbitant fees as regular students, and even to housewives desirous of pursuing 

higher studies. Acharya Nagarjuna University has started offering B.Sc., B.A., B.B.A., 

and B.Com courses at the Degree level and M.A., M.Com., M.Sc., M.B.A., and L.L.M., 

courses at the PG level from the academic year 2003-2004 onwards. 

To facilitate easier understanding by students studying through the distance mode, 

these self-instruction materials have been prepared by eminent and experienced teachers. 

The lessons have been drafted with great care and expertise in the stipulated time by these 

teachers. Constructive ideas and scholarly suggestions are welcome from students and 

teachers involved respectively. Such ideas will be incorporated for the greater efficacy of 

this distance mode of education. For clarification of doubts and feedback, weekly classes 

and contact classes will be arranged at the UG and PG levels respectively. 

It is my aim that students getting higher education through the Centre for 

Distance Education should improve their qualification, have better employment 

opportunities and in turn be part of country’s progress. It is my fond desire that in the 

years to come, the Centre for Distance Education will go from strength to strength in the 

form of new courses and by catering to larger number of people. My congratulations to 

all the Directors, Academic Coordinators, Editors and Lesson-writers of the Centre who 

have helped in these endeavors. 

Prof. K.Gangadhara Rao 
M.Tech.,Ph.D., 

    Vice-Chancellor I/c  

       Acharya Nagarjuna University 



M.Sc.–Statistics Syllabus 

SEMESTER-I 

102ST24: STATISTICAL COMPUTING USING R 
Unit-I:  

Introduction to R language: Objects (Atomics) -Basic types, modes and attributes, comments, 
constants. R–Data Types: character, numeric, integer, logical, complex and raw data types. 
R– Operators: arithmetic, relational, logical, assignment and miscellaneous operators. R–
Variables: variable assignment, data type, finding variables using ls()function, deleting 
Variables using rm() function, R-I/O console functions-scan(), print(), cat(), format(), setwd() 
and getwd() functions. R-vectors: creating vectors, vector assignment, manipulating vectors, 
arithmetic, generating regular sequences, logical vectors, and charactervectors,index vectors, 
selecting and modifying subsets of a vector. Manipulating character vectors using strsplit(), 
paste(), grep(), gsub() functions; R-factors: creating factor variables, handling factordata, 
generating factor levels using gl() function. 
 
Unit-II: 
R-Matrices: Creating matrices, arithmetic operators on matrices, matrix facilities, forming 
partitioned matrices, cbind() and rbind() functions, R-Lists: creating a list, naming, accessing 
and manipulating list elements, converting a list to a vector. R-Data frames: creation, adding 
rows and variables to data frame, attach() and detach(), working with data frames, data 
reshaping. Reading and getting data into R using files: reading data and writing data from / to 
files of type CSV, EXCEL, text and other data type files using the save(), load(), 
read.csv()and read.table(),write.csv() and write.table() functions. Retrieving files using 
file.choose(),function. 
 
Unit-III: 
R – Control Structures: Decision making-if, if-else, ladder if-else, nested if-else, and switch 
statements. Loops-repeat, while and for statements. Loop control statements -- break and 
next. R – Functions: function definition, function components, built-in functions, user- 
defined function, syntax of a function, function arguments, arguments matching, scope and 
evaluation, calling a function, one-line functions, using default values in functions. Built in 
R-functions and writing own R-functions or R-codes for small standard statistical problems 
like finding summary statistics, correlation, one-sample t-test, two-sample t-test and paired 
samples t-test, etc. Group manipulation using apply family of functions- apply, sapply, lapply 
and tapply. 
 
Unit-IV:  
R-Probability Distributions: Computing values of pdf, cdf, quantile and generating samples 
for bionomial, poission, normal, exponential, Weibull and other prominent distributions 
using Built inR – functions. Plotting density and cumulative density curves for the 
distributions. Built inR-syntaxes for the Shapiro-Wilk test of normality, Kolmogorov-
Smirnov test for one-sample and two-sample cases, Wilcoxon Mann-Whitney one-sample 
and two-sample U- tests, chi- square tests for association and goodness of fit.Writing own R-
functions or R- codes: Fitting of binomial, Poisson, normal, exponential, Weibull and logistic 
distributions based on a given frequency data and test for goodness of fit. Solving a non-
linear equation using Newton- Raphson method. 
 
 
 
 



Unit-V: 
R-Graphics: Use of high-level plotting functions for creating histograms, scatter plots, box- 
whisker plots, bar plot, dot plot, line charts using numeric data and categorical data, pie 
charts, bar Charts, Q-Q plot and curves. Controlling plot options using low-level plotting 
functions, adding lines, segments, points, polygon, grid to the plotting region; Add text using 
legend, text,mtex; and modify/addaxes, putting multiple plots ona single page. Built in R–
syntaxes for one-way ANOVA, two- way ANOVA. 
 
BOOKS FOR STUDY: 

1) Dr. Mark Gardener (2012): Beginning R – The Statistical Programming Language, Wiley India 
Pvt Ltd. 

2) W.N.Venables and D.M.Smith(2016):An Introduction to R 

3) J.P.Lander (2014): R for Everyone, Pearson Publications 

4) Garrrett Grolemund: Hands-On Programming with R 
 

BOOKS FOR REFERENCES: 

1) De Vries, A., and Meys, J. (2016). R For Dummies, Second Edition, John Wiley & Sons 
Private Ltd, NY 

2) Crawley,M,J.(2007).The R Book, JohnWiley and Sons Private Ltd.,NY. 



CODE:102ST24 
M.Sc DEGREE EXAMINATION 

First Semester 

Statistics::Paper- II-Statistical Computing Using R 

MODEL QUESTION PAPER 

Time: Three hours Maximum:70 Marks 

Answer ONE question from each unit (5x14=70) 

UNIT-I 

 

1. (a) Explain different types of data types and give an illustration for each type. 
 
    (b) Explain various I/O console functions by means of illustrations. 

 
(or) 

 
2. (a) Explain how to create and manipulate vectors in R ?  
 
     (b) Explain the following functions with suitable illustrations. 

 
UNIT -II 

 

3. (a) Explain how to create and manipulate matrices in R with suitable illustrations. Also,  
         explain various operators applicable on matrices.  
 
    (b) Explain, in detail, the creation and manipulation of data frames.  

 
(or) 

 
4. (a) Explain how to read data from various types of files by means of illustrations. Further,  
          explain write.csv(), write.table(), file.choose(), setwd() and getwd() functions with  
          suitable illustrations.  
 
(b) Explain the creation and manipulation of lists. 

 
UNIT - III 

 
5. (a) Explain various control statements in R by writing their syntax. Give an illustration in  
         each case.  
 

 (b) Write R program to find mean and median of the given sample without using built-in R  
      functions.  

(or) 
 

 



6. (a) What are user-defined functions? Explain them in detail with suitable illustrations. 
 
    (b) Write your own R function for two sample t-test. 

 
UNIT – IV 

 
7. (a) Write R-codes for generating samples of size n=1000 from each of the following 
          probability distributions and for plotting the density functions for the respective 
          distributions.   i) Poisson(10)  ii) N(10,100)  iii) exp(5)  

 
   (b) Write R- function for finding binomial probability and hence write R- code for fitting of  
         binomial distribution based on a given frequency data and test for goodness of fit. 
 

(or) 
 

8. (a) Write down the built-in R-syntax for the following tests and explain them.  
         i) Kolmogorov –Smirnov test for goodness of fit. ii) Wilcoxon Mann-Whitney two-  
            sample U-test  iii) Chi-square test for goodness of fit.  

 

    (b) Write R- code for solving the equation 2 6 0xe x    using Newton-Raphson method. 
 

UNIT –V 
 

9. (a) Explain the following high-level plotting commands in details i) plot() ii) barplot()  
       iii) pie() iv) hist()  
 
  (b) Explain various low-level plotting commands available in R. 

 
(or) 

 
10. (a) Write down the built-in R-syntax for drawing bar chart and Q-Q plot.  
 
      (b) Write down the built-in R-syntax for the following tests and explain them. i) CRD  
            analysis ii) RBD analysis. 
 
 
 ________________ 
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LESSON -1 

BASIC DATA TYPES AND OPERATORS 
 
OBJECTIVES:  
 
After studying this unit, you should be able to:  
 

 Recognize the significance of data in modern decision-making and computational 
processes. 

 Students should have a solid understanding of the modes, attributes, and constants, and 
manage the R workspace efficiently. 

 The student will learn apply arithmetic, relational, logical, assignment, and 
miscellaneous operators to perform various computational tasks. 

 Develop simple R scripts for data analysis and statistical tasks, utilizing the 
fundamental concepts of R programming. 

 
STRUCTURE: 
 

1.1. What and why is R?  

1.1.1  Features of R 

1.1.2 Applications of R 

1.2. Objects 

1.3. Modes 

1.3.1 Attributes 

1.3.2 Comments 

1.3.3 Constants 

1.4 Basic data types 

1.5 Operators 

      1.5.1  Arithmetic Operators 

     1.5.2 Relational Operators 

     1.5.3 Logical Operators 

     1.5.4.Assignment Operators 

     1.5.5 Miscellaneous Operators 

1.6 Conclusion 

1.7 Self Assessment Questions 

1.8 Further Readings 
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1.1. WHAT AND WHY IS R:  
 

R is a programming language and software environment that assists in the analysis of 
statistical data, the representation of images, and the generation of reports. R is a 
programming language that was initially developed by Ross Ihaka and Robert Gentleman at 
the University of Auckland in New Zealand. The R Development Core Team is currently 
expanding the capabilities of R.  

The core of R is an interpreted computer language that enables modular programming 
through the use of functions, as well as branching and looping. R makes it possible to 
integrate with procedures written in languages such as C, C++,.Net, Python, or FORTRAN, 
which leads to increased efficiency.  

The GNU General Public Licence makes R freely accessible to the public, and pre-
compiled binary copies of the programme are made available for a variety of operating 
systems, including Linux, Windows, and Mac Operating Systems. 

 R is a piece of free software that is shared under a copy left licence similar to that of 
GNU. It is also an official component of the GNU project known as GNU S. Starting from 
mid-1997, a central organisation known as the "R Core Team" has had the authority to make 
changes to the R source code archive. 

1.1.1 Features of R: 

R is a powerful programming language and environment primarily used for statistical 
computing and data analysis. Here are some key features: 

1. Statistical Computing & Analysis 

 Provides a wide range of statistical tests (e.g., regression, t-tests, ANOVA). 
 Advanced machine learning and modeling capabilities. 

2. Data Manipulation & Visualization 

 Efficient tools for data wrangling (e.g., dplyr, tidyverse). 
 Data visualization with libraries like ggplot2 and lattice. 

3. Open-Source & Extensible 

 Free to use and supported by a large community. 
 Thousands of packages available via CRAN (Comprehensive R Archive Network). 

4. Handling Big Data 

 Supports large datasets with packages like data.table. 
 Can integrate with Hadoop, Spark, and databases. 

5. Reproducibility & Reporting 

 R Markdown for creating dynamic reports. 
 Shiny for interactive web applications. 
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6. Integration with Other Languages 

 Can call Python, C, C++, Java, and SQL code. 
 Works with tools like Jupyter Notebooks. 

7. Rich Development Environment 

 Supported by IDEs like RStudio and Jupyter. 
 Version control integration with Git. 

1.1.2 Applications of R: 
 

1. Statistical analysis and making sense of data: At its core, R is the same thing as 
statistical research. It comes with all the tools you need to do a wide range of statistical tests, 
from simple descriptive statistics to complex regression models. R is great for more than just 
numbers.  It's also great for showing data visually.  ggplot2 and other similar packages make 
it easy to make interesting graphs and charts that help you understand large datasets visually. 
 
2. Exploring and cleaning the data: Exploring and cleaning the data are the first steps in 
any data analysis process. Because of what it can do, R is a great choice for dealing with 
missing values and outliers and checking the quality of the data as a whole before doing more 
in-depth analysis. In real life, R's powerful data preparation tools make sure that datasets are 
carefully prepared and improved so that insights are correct and reliable. 
 
3. Predictive Modelling and Machine Learning: R has a lot of features for both predictive 
modelling and machine learning. It has many methods for regression, classification, and 
clustering, which makes it a great language for making models that can predict the future. R's 
machine learning features are very useful for real-time tasks like predicting stock prices, 
customer behaviour, or disease results, as they help make decisions based on data. 
 
4. Biostatistics and Healthcare: R is a key tool in biostatistics; it is used to look at data from 
clinical trials, do epidemiological studies, and help healthcare workers make decisions based 
on data. Some of the ways it can be used in healthcare are in genomics, where it is very 
helpful for looking at genetic data, finding trends linked to diseases, and making personalized 
medicine possible. 
 
5. Finance and Risk Management: Risk modelling, portfolio optimisation, and analyzing 
market trends are all things that the financial industry does with R. In financial analytics, 
where real-time insights can drive strategic decisions, R's ability to work with big datasets is 
very important. 
 
People who want to become data scientists can learn how to use R programming for financial 
research and risk management by taking a well-rounded Data Science course. 
 
6. Social Sciences and Market Research: R is used a lot in the social sciences to look at 
survey results, social media sentiment, and general opinion. Because it is so flexible, 
researchers can use it to learn from very large and different social datasets. 
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7. Environmental Science and Climate Research: R makes a big difference in 
environmental science by looking at climate data, guessing what will happen to the 
environment, and figuring out how our actions affect environments. Its uses in climate studies 
are very important for understanding and solving problems related to the environment. As 
worries about the planet's future grow, data scientists are turning to R for environmental 
study and climate modelling. This shows how R can be used in the real world to solve 
problems. 
 

1.2 OBJECTS: 

 The entities that R creates at manipulates are known as objects. These may be 
variables, vectors, matrices, arrays of numbers, characteristics, functions are known general 
structures or more general structures built from such components. 

During an R-section objects are created and stored by name. The R-command objects () or 
ls() can be used to display the names of the objects which are currently stored within R. the 
collection of objects currently stored is called the work space. We can remove any particulars 
objects or object using the following function rm() 

Example:  

 rm (x), 

 rm (mean) 

To remove or erase all existing objects rm(list=ls()) 

1.3 MODES: 

In R, data modes and classes define the fundamental attributes and behavior of a data object. 
 For example, different modes and classes are handled differently by core functions like 
print(), summary(), and plot(). 

Data Object Modes: 

All data in R is an object and all objects have a “mode.”  The mode determines what type of 
information can be found within the object and how that information is stored.  Atomic 
“modes” are the basic building blocks for data objects in R.  There are 6 basic atomic modes: 

Data Mode Storage Example 

logical Logical TRUE or FALSE 

numeric integer, single or double Floating point real numbers; 3, 0.753 

complex Complex 3 + 2i 

character character strings in quotes (“) or apostrophes (‘) 

function special or built-in do.it <- function(x) {…} 

name Symbol any name assigned to an object (e.g. "my.data") 
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1.3.1 ATTRIBUTES: 

Objects can have attributes. Attributes are part of the object. These include: 

 names 
 dimnames 
 dim 
 class 
 attributes (contain metadata) 

You can also glean other attribute-like information such as length (works on vectors and lists) 
or number of characters (for character strings). 

1.3.2 COMMENTS: 

We can add comments to our code using the # character. It is useful to document our code in 
this way so that others (and us the next time we read it) have an easier time following what 
the code is doing. 

We can also change a variable’s value by assigning it a new value: 

weight_kg <- 57.5 

weight_kg 

[1] 57.5  

1.3.3. CONSTANTS: 

Constants, as the name suggests, are entities whose value cannot be altered. Basic types of 
constant are numeric constants and character constants. 

Numeric Constants 

All numbers fall under this category. They can be of type integer, double or complex. 

It can be checked with the typeof() function. 

Numeric constants followed by L are regarded as integer and those followed by i are regarded 
as complex. 

typeof(5) 
[1] "double" 
typeof(5L) 
[1] "integer" 
 typeof(5i) 
[1] "complex" 
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1.4  BASIC DATA TYPES: 

The simplest of these objects is the vector object and there are six data types of these atomic 
vectors, also termed as six classes of vectors. The other R-Objects are built upon the atomic 
vectors. 

 Numeric:  
 Integer:  
 Character (String):  
 Logical (Boolean):  
 Complex 
 raw 

 
Numeric: 
Decimal values are called numerics in R. It is the default computational data type. If we 
assign a decimal value to a variable x as follows, x will be of numeric type. 

 x = 10.5       # assign a decimal value  
 x              # print the value of x  
[1] 10.5  
class(x)       # print the class name of x  
[1] "numeric" 

Integer: 

In order to create an integer variable in R, we invoke the as.integer function. We can be 
assured that y is indeed an integer by applying the is.integer function. 
 y = as.integer(3)  
y              # print the value of y  
[1] 3  
class(y)       # print the class name of y  
[1] "integer"  
is.integer(y)  # is y an integer?  
[1] TRUE 

Incidentally, we can coerce a numeric value into an integer with the 
same as.integer function. 
as.integer(3.14)    # coerce a numeric value  
[1] 3 

And we can parse a string for decimal values in much the same way. 

 as.integer("5.27")  # coerce a decimal string  
[1] 5 

Complex 

A complex value in R is defined via the pure imaginary value i. 
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z = 1 + 2i     # create a complex number  

z              # print the value of z  
[1] 1+2i  
class(z)       # print the class name of z  
[1] "complex" 

The following gives an error as −1 is not a complex value. 

sqrt(−1)       # square root of −1  
[1] NaN  

Logical:  

A logical value is often created via comparison between variables. 
 

x = 1; y = 2   # sample values  
z = x > y      # is x larger than y?  
z              # print the logical value  
[1] FALSE  
class(z)       # print the class name of z  
[1] "logical" 

Standard logical operations are "&" (and), "|" (or), and "!" (negation). 
u = TRUE; v = FALSE  
u & v          # u AND v  
[1] FALSE  
u | v          # u OR v  
[1] TRUE  

 !u             # negation of u  
[1] FALSE 

Character: 

A character object is used to represent string values in R. We convert objects into 
character values with the as.character() function: 
 x = as.character(3.14)  
 x              # print the character string  
[1] "3.14"  
class(x)       # print the class name of x  
[1] "character" 

Two character values can be concatenated with the paste function. 
 fname = "Joe"; lname ="Smith"  
paste(fname, lname)  
[1] "Joe Smith" 
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raw Data  

In R, raw data types refer to the raw class, which is used to store raw bytes. It is primarily 
used for handling binary data, such as reading and writing files in binary format or dealing 
with cryptographic operations. 

You can create raw data using the as.raw() function: 

# Creating a raw vector 

raw_vec <- as.raw(c(65, 66, 67))  # ASCII codes for 'A', 'B', 'C' 

raw_vec 

Output:  

[1] 41 42 43 
 

1.5 OPERATORS: 

Introduction 

R is a powerful programming language widely used for statistical computing and data 
analysis. One of the fundamental aspects of R is its use of operators to perform various 
computations and logical evaluations. Operators in R can be classified into different 
categories, including arithmetic, relational, logical, assignment, and miscellaneous operators. 
Understanding these operators is crucial for effectively writing and executing R scripts. 

1.5.1 Arithmetic Operators 

Arithmetic operators in R are used to perform basic mathematical computations. These 
include addition, subtraction, multiplication, division, exponentiation, and modulo operations. 
The following table outlines the arithmetic operators in R: 

Operator Description Example 

+       Addition        5 + 3 results in 8 

-     Subtraction      10 - 4 results in 6 

*    Multiplication      6 * 2 results in 12 

/      Division       9 / 3 results in 3 

^ or **    Exponentiation    2^3 or 2**3 results in 8 

%%  Modulus (Remainder)     10 %% 3 results in 1 

%/%   Integer Division     10 %/% 3 results in 3 
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1.5.2 Relational Operators 

Relational operators in R are used to compare values and return Boolean results (TRUE or 
FALSE). These operators are essential for decision-making in programming. 

Operator Description Example 

== Equal to 5 == 5 results in TRUE 

!= Not equal to 5 != 3 results in TRUE 

> Greater than 7 > 4 results in TRUE 

< Less than 3 < 5 results in TRUE 

>= Greater than or equal to 6 >= 6 results in TRUE 

<= Less than or equal to 4 <= 5 results in TRUE 

1.5. 3 Logical Operators 

Logical operators in R are used for evaluating logical expressions and combining multiple 
conditions. 

Operator Description Usage 

& Element wise logical AND operation a&b 

| Element wise logical OR operation a|b 

! Element wise logical NOT operation !a 

&& Operand wise logical AND operation a&&b 

|| Operand wise logical OR operation a||b 

1.5.4 Assignment Operators 

Assignment operators in R are used to assign values to variables. R provides multiple 
assignment operators. 

Operator Description Example 

<- Left assignment x <- 10 

-> Right assignment 10 -> x 

= Alternative assignment x = 5 
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Operator Description Example 

<<- Global assignment (used in functions) x <<- 20 

1.5.5 Miscellaneous Operators 

Miscellaneous operators in R include operators used for special operations, such as sequence 
generation, membership checking, and matrix multiplication. 

Operator Description Example 

: Sequence generator 1:5 results in 1 2 3 4 5 

%in% Membership checking 3 %in% c(1, 2, 3, 4) results in TRUE 

%*% Matrix multiplication A %*% B (for matrices A and B) 

 

1.6 SUMMARY: 

R is a powerful language for data analysis and visualization, offering rich features and 
an extensive ecosystem for statistical computing. Understanding its core concepts, such as 
objects, data types, and operators, is essential for efficient programming in R. 

1.7 SELF ASSESSMENT QUESTIONS: 
 

1. Explain the difference between a vector and a list in R. 
2. Write an R script to demonstrate the use of arithmetic operators. 
3. What are attributes in R? Give an example. 
4. How do you comment code in R? 
5. Discuss the applications of R in different industries. 
6. Explain the different modes available in R with examples. 
7. Describe logical operators in R with examples. 

  
1.8 SUGGESTED READINGS: 
 

1) Dr. Mark Gardener (2012): Beginning R – The Statistical Programming Language, 
Wiley India Pvt Ltd. 

2) W. N. Venables and D. M. Smith(2016): An Introduction to R 
3) J.P. Lander(2014):R for Everyone, Pearson Publications 

4) Garrett Grolemund : Hands-On Programming with R 

5) Michael J. Crawley: The R Book           

                                                                                                    

 

                  Dr. SYED JILANI 



LESSON -2 

VARIABLES AND INPUT AND OUTPUT 
FUNCTIONS 

 
OBJECTIVES:  
 
After studying this unit, you should be able to:  

    To understanding the basic data types and operators 
    To know the concept of Structure and data types and operators 
 To acquire knowledge about significance of various data types in R (e.g., numeric,   
      character, logical), and understand their role in data manipulation..  
    To understand the purpose and objectives of pivotal provisions of the data types and   
      operators. 

 
STRUCTURE: 
 

2.1  Introduction  

2.2  R Variables 

2.2.1 Variable Assignment 

       2.2.2 Data Types in R 

2.3  Finding variable: 

       2.3.1 Deleting Variables 

2.4 R I/O Functions 

2.4.1 Scan () 

2.4.2 Print() 

2.4.3 cat() 

2.4.4 format () 

2.5 getwd( ) 

2.5.1 setwd() 

2.6 Conclusion 

2.7 Self Assessment Questions 

2.8 Further Readings 

2.1 INTRODUCTION:  

A variable in R is a name assigned to a value or an object that can store different types 
of data such as numbers, text, or complex structures. Variables are used to store and 
manipulate data efficiently in R programming. 
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2.2 R VARIABLES: 

2.2.1 Variable Assignment: 

There are three different assignment operators. Those are leftwards(<-), rightwards(->) and 
equal to(=). Two of them leftward and rightward can be used normally used in functions, 
where as the operator equal to is only allowed at the top level(in the complete expression 
typed at  the command prompt or as one of the sub expressions in a braced list of 
expressions). We use the print() or cat()function. This function is used to combine multiple 
items. 

#Assignment using leftward operator 

x<-("operator") 

#Assignment using rightward operator 

("variable")-> y 

#Assignment using equal operator 

z=c(1,2,3) 

print(x) 

print(y) 

print(z) 

cat("x is ",x,"\n") 

cat("y is ",y,"\n") 

cat("z is ",z,"\n") 

 Output: 

[1] "operator" 

[1] "variable" 

[1] 1 2 3 

x is operator  

y is variable  

z is 1 2 3 

2.2.2 Data Types in R: 

R supports multiple data types, which are crucial for storing and processing different kinds of 
information. The main data types include: 

1. Numeric (double and integer): Used for numbers. 
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   num <- 10.5    # Double 
int <- as.integer(5)  # Integer 

2. Character: Used for text strings. 

char <- "Hello, R!" 

3. Logical: Represents TRUE or FALSE values. 

bool <- TRUE 

4. Complex: Used for complex numbers. 

comp <- 4 + 3i 

5. Factor: Used to represent categorical data. 

fact <- factor(c("Male", "Female", "Male")) 
 
output: 
 
Numeric (Double) 10.5  
Integer 5  
Character Hello, R!  
Logical TRUE  
Complex 4+3i  
Factor Male 

 

2.3 FINDING VARIABLE: 

When you are running commands in an R commands in an R command prompt, the instance 
might get stacked up with lot of variables. 

To find all R variables that are live at a point in R command prompt or R script file, ls()is the 
command that returns a character vector. 

>ls() 

[1] "a" "b" "c" "d" "x" "y" "z" 

 p=35.4 

 w=34 

 t=45 

>ls() 

 [1] "a" "b" "c" "d" "p" "t" "w" "x" "y" "z" 
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2.3.1 Deleting Variables 

The rm() function in R is used to remove objects from the environment. It is a powerful tool 
for managing memory and ensuring that unnecessary variables do not clutter the workspace. 

 Removing a Single Variable 

To delete a specific variable, use: 

rm(x) 

This will remove x from the environment, making it inaccessible. 

 Removing Multiple Variables 

You can delete multiple variables at once by passing multiple variable names to rm(): 

rm(y, z) 

 Removing All Variables 

To clear all variables from the workspace, use: 

rm(list = ls()) 

This removes all objects from the global environment, effectively resetting it. 

 Checking if a Variable Exists 

After removing a variable, you can check if it still exists using: 

exists("x") 

If x has been deleted, this function will return FALSE. 

 Protecting Variables from Accidental Deletion 

If you want to protect certain variables from being deleted, you can selectively remove 
others: 

rm(list = setdiff(ls(), c("important_var"))) 

This keeps important_var while deleting all other variables. 

2.4 R I/O FUNCTIONS: 

2.4.1 Scan():- 

scan() can accept  a variety of connection functions. It is reads data from a file, a URL or  the keyboa
into a vector. It can be embedded in a call to matrix () or array(). 



Statistical Computing Using R 2.5  Variables and Input… 

x<-scan("","int") 
1: 32 
2: 43 
3: 54 
4: 67 
5:  
Read 4 items 
> x 
[1] "32" "43" "54" "67" 
 
 

2.4 .2 Print(): 
This function can be used to display the entire object, and is invoked when an 
expression is not assigned to a value. For lists and arrays include subscripting 
information. 

print(7) 
[1] 7 

 print(matrix(c(1,2,3,4),ncol=2)) 

     [,1] [,2] 

[1,]    1    3 

[2,]    2    4 

 

2.4.3 cat() 

cat() converts numerical complex elements in the same way as print().It uses the 
minimum  field  width necessary for each element, rather than the same field 
width for all elements. cat() will drop attributes of its inputs. This can write to a 
file by passing  string to the file argument. 

#Example for cat() function 

a=23 

b=42 

cat("The sum of a&b is",a+b,"\n") 

cat("The product of a&bis",a*b,"\n") 

Output: 

The sum of a&b is 65  

The product of a&b is 966 

2.4.4 Format(): 

               The function format() allows you to format an R object for printing. 
Essentially, format() treats the elements of a vector as character strings using a 
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common format. This is especially useful when printing numbers and quantities 
under different formats.  

format(13.7) 

[1] "13.7" 

>format(13.123456) 

[1] "13.12346" 

2.5 getwd( ): 
 
R looks for your data file in the default directory. You can find the default directory by 
using the   getwd( ) command like so: 

getwd( ) 
[1] "C:/Documents and Settings/Administrator/My Documents" 
getwd( ) 
[1] "/Users/markgardener" 
getwd( ) 
[1] "/home/mark" 
 

2.5.1 setwd() 
             If your file is somewhere else you must type its name and location in full. The 
location is relative to the default directory; in the preceding example the file was on the 
desktop so the command ought to have been: 
 
 data6 = scan(file = 'Desktop/test data.txt') 
 
              The filename and directories are all case sensitive. You can also type in a URL 
and link to a file over the Internet directly; once again the full URL is required. 
It may be easier to point permanently at a directory so that the files can be loaded simply 
by typing their names. You can alter the working directory using the setwd( ) command: 
setwd('pathname') 
 
When using this command, replace the pathname part with the location of your target 
directory. 
              The location is always relative to the current working directory, so to set to my 
Desktop I used the following: 

setwd('Desktop') 
getwd( ) 
[1] "/Users/markgardener/Desktop" 

To step up one level you can type the following: 
setwd('..') 

You can look at a directory and see which files/folders 
 
2.6 SUMMARY: 

Understanding variables, data types, and input/output functions in R is crucial for 
efficient programming and data analysis. Mastering these fundamental concepts allows 
users to write better scripts, manage data effectively, and interact seamlessly with the R 
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environment. The ability to assign, manipulate, and delete variables, along with 
performing input/output operations, forms the backbone of successful data handling in R. 

2.7 SELF ASSESSMENT QUESTIONS: 

1. Explain the process of assigning values to variables in R. 
2. List and describe the basic data types in R. 
3. Write the R command to display all variables in the current environment. 
4. How can a variable be removed from the workspace in R? 
5. Differentiate between print() and cat() functions in R. 
6. Demonstrate the use of getwd() and setwd() functions with an example. 
7. What is the purpose of the scan() function in R? 
8. Explain the format() function with an example. 

2.8 SUGGESTED READINGS: 
 

1) Dr. Mark Gardener (2012): Beginning R – The Statistical Programming 
Language, Wiley India Pvt Ltd. 

2) W. N. Venables and D. M. Smith(2016): An Introduction to R 

3) J.P. Lander(2014):R for Everyone, Pearson Publications 

4) Garrett Grolemund : Hands-On Programming with R 

5) Michael J. Crawley: The R Book 
 

              Dr. SYED JILANI 

 

 

 

 

 
 



LESSON -3 

VECTORS AND GENERATING REGULAR 
SEQUENCES OF FUNCTIONS 

 
OBJECTIVES:  
 
After studying this unit, you should be able to:  

 Understand the Concept and Importance of Vectors in R 
 Students should have a solid understanding of the fundamentals of R 

Programming 
 Understand apply logical vectors for indexing and filtering, and handle character 

vectors for text data manipulation. 
 To understand the purpose and objectives of pivotal provisions of the vectors and 

generating regular sequences of functions. 
 

STRUCTURE: 
 
3.1  Introduction  

3.2  R vectors 

3.3  Generating Regular Sequences 

3.4  Logical Vectors 

3.5  Character Vectors 

3.6  Index Vectors 

3.7  Selecting and Modifying Subsets of a Vector 

3.8  Manipulating character vectors  

3.9  Factors 

3.10  Conclusion 

3.11  Self Assessment Questions 

3.12  Further Readings 

 
3.1 INTRODUCTION:  

       Vectors are one of the most fundamental data structures in R.  A vector is a sequence 

of elements of the same data type. Vectors can hold numeric, integer, character, logical, 

or complex values. They are commonly used for performing operations on multiple data 

elements simultaneously. 
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3.2 R VECTORS 

3.2.1 Creating Vectors 
When you want to create vector with more than one element, you should use c() 

function which means to combine the elements into a vector. 

# Create a vector. 
apple <- c('red','green',"yellow") 
print(apple) 
 
# Get the class of the vector. 
print(class(apple)) 
When we execute the above code, it produces the following result: 
 
[1] "red" "green" "yellow" 
[1] character" 

3.2.2vector Assignment  

A vector is a basic data structure in R. It is a sequence of elements of the same type. Vectors 

are the most common data type in R and are used extensively in data analysis and statistical 

computations. 

# Assigning a character vector 
character_vector <- c("apple", "banana", "cherry") 
character_vector 

Output: 

[1] "apple"  "banana" "cherry" 

3.2.3 Manipulating Vectors 

Vectors can be modified by adding or removing elements: 

vec <- c(1, 2, 3) 
vec <- c(vec, 4, 5) 
vec 

Output: 

[1] 1 2 3 4 5 

3.2.4 Arithmetic Operations on Vectors 
Two vectors of same length can be added, subtracted, multiplied or divided giving the 

result as a vector output. 
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# Create two vectors. 

v1 <- c(3,8,4,5,0,11) 

v2 <- c(4,11,0,8,1,2) 

# Vector addition. 

add.result <- v1+v2 

print(add.result) 

 

# Vector substraction. 

sub.result <- v1-v2 

print(sub.result) 

 

# Vector multiplication. 

multi.result <- v1*v2 

print(multi.result) 

 

# Vector division. 

divi.result <- v1/v2 

print(divi.result) 

When we execute the above code, it produces the following result: 

[1] 7 19 4 13 1 13 

[1] -1 -3 4 -3 -1 9 

[1] 12 88 0 40 0 22 

[1] 0.7500000 0.7272727 Inf 0.6250000 0.0000000 5.5000000 

3.3  GENERATING REGULAR SEQUENCES: 

Regular sequences are commonly used in R for generating sequences of numbers with 

a specific pattern. These sequences are often used in data manipulation, indexing, and 

simulation tasks. R provides several functions to generate regular sequences efficiently. 

3.3.1 . seq() Function 

The seq() function is the primary function in R to generate sequences. It allows creating 

sequences with customized steps, lengths, and patterns. 
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Syntax: 

seq(from, to, by, length.out, along.with) 

 from: Starting value of the sequence. 

 to: Ending value of the sequence. 

 by: Increment between sequence values. 

 length.out: Desired length of the sequence. 

 along.with: Takes the length of an existing object to define the sequence. 

Examples: 

# Sequence from 1 to 10 

seq(1, 10) 

 

# Sequence from 1 to 10 with a step of 2 

seq(1, 10, by = 2) 

 

# Sequence from 1 to 10 with exactly 5 elements 

seq(1, 10, length.out = 5) 

 

# Sequence along the length of another vector 

seq(along.with = c(3, 5, 7, 9)) 

Output: 

[1]  1  2  3  4  5  6  7  8  9 10 

[1] 1 3 5 7 9 

[1]  1.00  3.25  5.50  7.75 10.00 

[1] 1 2 3 4 

3.3.2 . Colon Operator 

The colon operator: is a shorthand way to create a sequence of integers with a step of 1. 

Syntax: 

start:end 
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Examples: 

# Sequence from 1 to 10 

1:10 

 

# Sequence from 5 to 1 

5:1 

Output: 

[1]  1  2  3  4  5  6  7  8  9 10 

[1] 5 4 3 2 1 

 

3.3.3 . rep() Function 

The rep() function is used to replicate the values in a vector. 

Syntax: 

rep(x, times, each, length.out) 

   x: The values to replicate. 

times: Number of times to replicate the entire vector. 

each: Number of times to replicate each element. 

length.out: Desired length of the result. 

Examples: 

# Replicate the vector 1, 2, 3 two times 

rep(c(1, 2, 3), times = 2) 

 

# Replicate each element of the vector 1, 2, 3 two times 

rep(c(1, 2, 3), each = 2) 

 

# Replicate the vector 1, 2, 3 to a specified length of 5 

rep(c(1, 2, 3), length.out = 5) 
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Output: 

[1] 1 2 3 1 2 3 

[1] 1 1 2 2 3 3 

[1] 1 2 3 1 2 

3.4  LOGICAL VECTORS: 

Logical vectors are vectors that contain only TRUE, FALSE, or NA values. They are often 

used in conditions, indexing, and logical operations. 

Syntax: 

c(TRUE, FALSE, NA) 

Examples: 

# Creating a logical vector 

logical_vector <- c(TRUE, FALSE, TRUE, NA) 

logical_vector 

 

# Using logical vectors for indexing 

numeric_vector <- c(10, 20, 30, 40) 

numeric_vector[logical_vector] 

Output: 
[1] TRUE FALSE TRUE    NA 

[1] 10 30 

3.5  CHARACTER VECTORS: 

Character vectors are vectors that contain character strings. They are often used to represent 

names, labels, and categorical data. 

Syntax: 

c("string1", "string2", "string3") 
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Examples: 

# Creating a character vector 

char_vector <- c("apple", "banana", "cherry") 

char_vector 

 

# Accessing elements of a character vector 

char_vector[2] 

Output: 

[1] "apple"  "banana" "cherry" 

[1] "banana" 

names_vec <- c("Alice", "Bob", "Charlie") 

names_vec 

 

Output 

[1] "Alice" "Bob" "Charlie" 

3.6  INDEX VECTORS: 

Index vectors are used to select elements from a vector based on their positions. They 

can be numeric, logical, or character vectors. 

Syntax: 

vector[index] 

Examples: 

vec <- c(10, 20, 30, 40, 50) 

vec[2] 

vec[c(1, 3, 5)] 
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Output 

[1] 20 

[1] 10 30 50 

3.7  SELECTING AND MODIFYING SUBSETS OF A VECTOR: 

Selecting and modifying subsets of a vector is a common task in R, which allows users to 

extract or change parts of a vector. 

Syntax: 

vector[index] <- value 

Example:1 

# Selecting a subset 

vec <- c(1, 2, 3, 4, 5) 

subset <- vec[2:4] 

subset 

 

# Modifying a subset 

vec[2:4] <- c(10, 20, 30) 

vec 

Output: 

[1] 2 3 4 

[1] 1 10 20 30  5 

Example:2  

vec <- c(5, 10, 15, 20, 25)  

vec[vec > 10] <- 100 

vec 
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Output 

[1] 5 10 100 100 100 

 

3.8 MANIPULATING CHARACTER VECTORS: 

Character vectors in R can be manipulated using various functions. Some key functions 

include strsplit(), paste(), grep(), and gsub(). 

3.8.1 strsplit() Function 

The strsplit() function splits character strings into substrings based on a specified delimiter. 

Syntax: 

strsplit(x, split) 

Example: 

text <- "apple,banana,grape" 
split_text <- strsplit(text, ",") 
print(split_text) 

Output: 

[[1]] 
[1] "apple"  "banana" "grape"  

3.8.2 paste () Function 

The paste() function concatenates character vectors. 

Syntax: 

paste(..., sep = " ", collapse = NULL) 

Example: 

words <- c("Hello", "World") 

joined_text <- paste(words, collapse = " ") 

print(joined_text) 
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Output: 

[1] "Hello World" 

3.8.3 grep() Function 

The grep() function searches for patterns in a character vector and returns the matching 

indices. 

Syntax: 

grep(pattern, x, ignore.case = FALSE, value = FALSE) 

Example: 

text_vector <- c("apple", "banana", "cherry") 

match_index <- grep("ban", text_vector) 

print(match_index) 

Output: 

[1] 2 

3.8.4 gsub() Function 

The gsub() function replaces all occurrences of a pattern in a character string. 

Syntax: 

gsub(pattern, replacement, x) 

Example: 

text <- "Hello, World!" 

new_text <- gsub("World", "R", text) 

print(new_text) 
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Output: 

[1] "Hello, R!" 

3.9  FACTORS: 

Factors are the data objects which are used to categorize the data and store it as levels. 

They can store both strings and integers. They are useful in the columns which have a limited 

number of unique values. Like "Male, "Female" and True, False etc. They are useful in data 

analysis for statistical modeling. 

Factors are created using the factor () function by taking a vector as input. 

Example 

# Create a vector as input. 

data<c("East","West","East","North","North","East","West", "West","West","East","North") 

print(data) 

print(is.factor(data)) 

# Apply the factor function. 

factor_data <- factor(data) 

print(factor_data) 

print(is.factor(factor_data)) 

When we execute the above code, it produces the following result: 

[1] "East" "West" "East" "North" "North" "East" "West" "West" "West" 

"East" "North" 

[1] FALSE 

[1] East West East North North East West West West East North 

Levels: East North West 

[1] TRUE 
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3.9.1 Factors in Data Frame 

On creating any data frame with a column of text data, R treats the text column as 

categorical data and creates factors on it. 

# Create the vectors for data frame. 

height <- c(132,151,162,139,166,147,122) 

weight <- c(48,49,66,53,67,52,40) 

gender <- c("male","male","female","female","male","female","male") 

# Create the data frame. 

input_data <- data.frame(height,weight,gender) 

print(input_data) 

# Test if the gender column is a factor. 

print(is.factor(input_data$gender)) 

# Print the gender column so see the levels. 

print(input_data$gender) 

When we execute the above code, it produces the following result: 

 height weight gender 

1 132 48 male 

2 151 49 male 

3 162 66 female 

4 139 53 female 

5 166 67 male 

6 147 52 female 

7 122 40 male 
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[1] TRUE 

[1] male male female female male female male 

Levels: female male 

Changing the Order of Levels 

The order of the levels in a factor can be changed by applying the factor function again 

with new order of the levels. 

data <- 

c("East","West","East","North","North","East","West","West","West","East","North") 

# Create the factors 

factor_data <- factor(data) 

print(factor_data) 

# Apply the factor function with required order of the level. 

new_order_data <- factor(factor_data,levels = c("East","West","North")) 

print(new_order_data) 

When we execute the above code, it produces the following result: 

[1] East West East North North East West West West East North 

Levels: East North West 

[1] East West East North North East West West West East North 

Levels: East West North 

3.9.2 Generating Factor Levels 

We can generate factor levels by using the gl() function. It takes two integers as input 

which indicates how many levels and how many times each level. 

Syntax 
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gl(n, k, labels) 

Following is the description of the parameters used: 

 n is a integer giving the number of levels. 

 k is a integer giving the number of replications. 

 labels is a vector of labels for the resulting factor levels. 

Example 

v <- gl(3, 4, labels = c("Tampa", "Seattle","Boston")) 

print(v) 

When we execute the above code, it produces the following result: 

Tampa Tampa Tampa Tampa Seattle Seattle Seattle Seattle Boston 

[10] Boston Boston Boston 

Levels: Tampa Seattle Boston 

3.10  SUMMARY: 

Vectors are fundamental data structures in R that store elements of the same type. They can 

be created using c(), manipulated using indexing, and operated on using vectorized 

arithmetic. Logical, character, and factor vectors offer additional flexibility for data handling. 

Understanding these concepts is crucial for data analysis and manipulation in R. 

3.11  SELF ASSESSMENT QUESTIONS: 
 

1. Define a vector in R and explain how it is created. 

2. What are the different ways to generate sequences in R? 

3. Explain how to modify subsets of a vector with examples. 

4. Differentiate between grep() and gsub() functions. 

5. How do factors help in categorical data representation? 

6. Write R code to create a numeric vector, perform arithmetic operations, and extract a 
subset. 

7. Explain the use of paste() function with an example. 

8. How do logical vectors work in R? Provide an example. 
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9. Describe the importance of factors in data analysis. 

10. Write an R program to split a character string using strsplit() and modify it using gsub(). 

3.12  SUGGESTED READINGS: 

1) Dr. Mark Gardener (2012): Beginning R – The Statistical Programming Language, 

Wiley India Pvt Ltd. 

2) W. N. Venables and D. M. Smith(2016): An Introduction to R 

3) J.P. Lander(2014):R for Everyone, Pearson Publications 

4) Garrett Grolemund : Hands-On Programming with R 

5) Michael J. Crawley: The R Book       

                                                                            

Dr. SYED JILANI 

 

  



LESSON 4 

R MATRICES 
 
OBJECTIVES:  
 
After studying this unit, you should be able to:  
 Understand the importance of matrices 
 Students should have a solid understanding about the concept of matrices 
 The student will learn apply arithmetic, relational, logical, assignment, and miscellaneous 

operators to perform various computational tasks. 
 Further, the student will be familiar with graphical facilities for data analysis available in 

R. 
 

STRUCTURE 

4.1 Introduction 

4.2 Creating Matrices 

4.3 Arithmetic Operators On Matrices 

4.4 Accessing Elements of a matrix 

4.5 Matrix Computations 

     4.5.1 Creating a Matrix 
     4.5. 2. Accessing Elements 
     4.5. 3. Matrix Operations 
     4.5.4. Combining Matrices 
     4.5. 5. Diagonal Matrix 
     4.5.6. Extract Diagonal Elements 
     4.5.7. Identity Matrix 
     4.5.8. Apply Functions to Rows/Columns 
 

4.6 Forming Partitioned Matrices 

     4.6.1. Partitioned Matrices 
     4.6.2. cbind()  
     4.6.3. rbind()  
     4.6.4. Combining rbind() and cbind() Together 
 

4.7 Conclusion 

4.8 Self Assessment Questions 

4.9 Further Readings 
 

4.1 INTRODUCTION: 

Matrices are the R objects in which the elements are arranged in a two-dimensional 
rectangular layout. They contain elements of the same atomic types. Though we can create a 
matrix containing only characters or only logical values, they are not of much use. We use 
matrices containing numeric elements to be used in mathematical calculations. A Matrix is 
created using the matrix() function. 
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Syntax 
 
The basic syntax for creating a matrix in R is: 
 
matrix(data, nrow, ncol, byrow, dimnames) 
 
Following is the description of the parameters used: 
 

 Data is the input vector which becomes the data elements of the matrix. 
 nrow is the number of rows to be created. 
 ncol is the number of columns to be created. 
 byrow is a logical clue. If TRUE then the input vector elements are arranged by row. 
 dimname is the names assigned to the rows and columns. 

 
Example: 
 
Create a matrix taking a vector of numbers as input 
# Elements are arranged sequentially by row. 
M <- matrix(c(3:14), nrow=4, byrow=TRUE) 
print(M) 
# Elements are arranged sequentially by column. 
N <- matrix(c(3:14), nrow=4, byrow=FALSE) 
print(N) 
# Define the column and row names. 
rownames = c("row1", "row2", "row3", "row4") 

colnames = c("col1", "col2", "col3") 
P<-matrix(c(3:14), nrow=4, byrow=TRUE, dimnames=list(rownames, colnames)) 
print(P) 
 
#When we execute the above code, it produces the following  
 
output: 
[,1] [,2] [,3] 
[1,] 3  4  5 
[2,] 6  7  8 
[3,] 9 10 11 
[4,]12 13 14 
 
   [,1] [,2] [,3] 
[1,] 3   7   11 
[2,] 4   8   12 
[3,] 5   9   13 
[4,] 6   10  14 
 
    col1 col2 col3 
row1 3     4    5 
row2 6     7    8 
row3 9     10   11 
row4 12    13   14 
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4.2  CREATING MATRICES: 

Matrix can be created using the matrix() function. 

Dimension of the matrix can be defined by passing appropriate value for 
arguments nrow and ncol. 

Providing value for both dimension is not necessary. If one of the dimension is provided, the 
other is inferred from length of the data. 

>matrix(1:9, nrow = 3, ncol = 3) 
      [,1] [,2] [,3] 
[1,]    1    4    7 
[2,]    2    5    8 
[3,]    3    6    9 
> # same result is obtained by providing only one dimension 
>matrix(1:9, nrow = 3) 
      [,1] [,2] [,3] 
[1,]    1    4    7 
[2,]    2    5    8 
[3,]    3    6    9 

We can see that the matrix is filled column-wise. This can be reversed to row-wise filling by 
passing TRUE to the argument byrow. 

>matrix(1:9, nrow=3, byrow=TRUE)    # fill matrix row-wise 
      [,1] [,2] [,3] 
[1,]    1    2    3 
[2,]    4    5    6 
[3,]    7    8    9 

In all cases, however, a matrix is stored in column-major order internally as we will 
see in the subsequent sections. 

It is possible to name the rows and columns of matrix during creation by passing a 2 element 
list to the argument dimnames. 

> x <- matrix(1:9, nrow = 3, dimnames = list(c("X","Y","Z"), c("A","B","C"))) 
> x 
A B C 
X 1 4 7 
Y 2 5 8 
Z 3 6 9 

These names can be accessed or changed with two helpful 
functions colnames() and rownames(). 

>colnames(x) 
[1] "A" "B" "C" 
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>rownames(x) 
 
[1] "X" "Y" "Z" 
 
> # It is also possible to change names 
>colnames(x) <- c("C1","C2","C3") 
>rownames(x) <- c("R1","R2","R3") 
> x 
    C1 C2 C3 
R1  1  4  7 
R2  2  5  8 
R3  3  6  9 

Another way of creating a matrix is by using functions cbind() and rbind() as in column bind 
and row bind. 

>cbind(c(1,2,3),c(4,5,6)) 
      [,1] [,2] 
[1,]    1    4 
[2,]    2    5 
[3,]    3    6 
 
>rbind(c(1,2,3),c(4,5,6)) 
      [,1] [,2] [,3] 
[1,]    1    2    3 
[2,]    4    5    6 

Finally, you can also create a matrix from a vector by setting its dimension using dim(). 

> x <- c(1,2,3,4,5,6) 
> x 
[1] 1 2 3 4 5 6 
> class(x) 
 
[1] "numeric" 
> dim(x) <- c(2,3) 
> x 
      [,1] [,2] [,3] 
[1,]    1    3    5 
[2,]    2    4    6 
 
> class(x) 
[1] "matrix" 
 

4.3 ACCESSING ELEMENTS OF A MATRIX: 

Elements of a matrix can be accessed by using the column and row index of the element. 
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We consider the matrix P above to find the specific elements below. 
 
# Define the column and row names. 
rownames = c("row1", "row2", "row3", "row4") 
colnames = c("col1", "col2", "col3") 
 
# Create the matrix. 
P <- matrix(c(3:14), nrow=4, byrow=TRUE, dimnames=list(rownames, colnames)) 
 
# Access the element at 3rd column and 1st row. 
print(P[1,3]) 
 
# Access the element at 2nd column and 4th row. 
print(P[4,2]) 
 
# Access only the 2nd row. 
print(P[2,]) 
 
# Access only the 3rd column. 
print(P[,3]) 
 
When we execute the above code, it produces the following result: 
[1] 5 
[1] 13 
col1 col2 col3 
  6    7    8 
row1 row2 row3 row4 

5  8    11   14 
 

4.4  MATRIX COMPUTATIONS: 

Various mathematical operations are performed on the matrices using the R operators. 
The result of the operation is also a matrix. 
The dimensions (number of rows and columns) should be same for the matrices involved 
in the operation. 
 
Matrix Addition & Subtraction 
# Create two 2x3 matrices. 
 
matrix1 <- matrix(c(3, 9, -1, 4, 2, 6), nrow=2) 
print(matrix1) 
matrix2 <- matrix(c(5, 2, 0, 9, 3, 4), nrow=2) 
print(matrix2) 
 
# Add the matrices. 
result <- matrix1 + matrix2 
cat("Result of addition","\n") 
print(result) 
# Subtract the matrices 
result <- matrix1 - matrix2 
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cat("Result of subtraction","\n") 

print(result) 

When we execute the above code, it produces the following result: 
[,1] [,2] [,3] 
[1,] 3 -1 2 
[2,] 9 4 6 
[,1] [,2] [,3] 
[1,] 5 0 3 
[2,] 2 9 4 
 
Result of addition 
[,1] [,2] [,3] 
[1,] 8 -1 5 
[2,] 11 13 10 
 
Result of subtraction 
[,1] [,2] [,3] 
[1,] -2 -1 -1 
[2,] 7 -5 2 
 
Matrix Multiplication & Division 
# Create two 2x3 matrices. 
matrix1 <- matrix(c(3, 9, -1, 4, 2, 6), nrow=2) 
print(matrix1) 
matrix2 <- matrix(c(5, 2, 0, 9, 3, 4), nrow=2) 
print(matrix2) 
# Multiply the matrices. 
result <- matrix1 * matrix2 
cat("Result of multiplication","\n") 
print(result) 
# Divide the matrices 
result <- matrix1 / matrix2 
cat("Result of division","\n") 
print(result) 
When we execute the above code, it produces the following result: 

[,1] [,2] [,3] 
[1,] 3 -1 2 
[2,] 9 4 6 
[,1] [,2] [,3] 
[1,] 5 0 3 
[2,] 2 9 4 
Result of multiplication 
[,1] [,2] [,3] 
[1,] 15 0 6 
[2,] 18 36 24 
Result of division 
[,1] [,2] [,3] 
[1,] 0.6 -Inf 0.6666667 
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[2,] 4.5 0.4444444 1.5000000 

4.5  MATRIX  FACILITIES: 

In R programming, matrices are a fundamental data structure used for mathematical and 
statistical computations. R provides a wide range of matrix facilities to create, manipulate, 
and perform operations on matrices efficiently. Below are some key matrix facilities in R, 
explained with examples: 

4.5.1 Creating a Matrix 

The matrix() function is commonly used to create matrices in R. 

# Create a 3x3 matrix 
A <- matrix(c(1, 2, 3, 4, 5, 6, 7, 8, 9), nrow = 3, ncol = 3) 
print(A) 

Output: 
     [,1] [,2] [,3] 
[1,]    1    4    7 
[2,]    2    5    8 
[3,]    3    6    9 

By default, R fills the matrix column-wise. 

4.5. 2. Accessing Elements 

You can access specific elements, rows, or columns. 
# Access element in 2nd row, 3rd column 
A[2, 3] 
# Access entire 1st row 
A[1, ] 
# Access entire 2nd column 
A[, 2] 

Output: 
 [1] 8 
[1] 1 4 7 
[1] 4 5 6 
 

4.5. 3. Matrix Operations 

(a) Addition & Subtraction 
 

B <- matrix(1:9, nrow = 3) 
 
# Matrix Addition 
C <- A + B 
# Matrix Subtraction 
D <- A - B 
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print(C) 
print(D) 

Output: 
     [,1] [,2] [,3] 

[1,]    2    8   14 

[2,]    4   10   16 

[3,]    6   12   18 

     [,1] [,2] [,3] 

[1,]    0    0    0 

[2,]    0    0    0 

[3,]    0    0    0 

(b) Matrix Multiplication 

(i) Element-wise Multiplication (*) 
E <- A * B 
print(E) 

Output: 
 
     [,1] [,2] [,3] 
[1,]    1   16   49 
[2,]    4   25   64 
[3,]    9   36   81 

(ii) Matrix Product (%*%) 
F <- A %*% B 
print(F) 

Output: 

     [,1] [,2] [,3] 

[1,]   30   66  102 

[2,]   36   81  126 

[3,]   42   96  150 

(c) Transpose of a Matrix 
t_A <- t(A) 
print(t_A) 

Output: 
    [,1] [,2] [,3] 
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[1,]    1    2    3 
[2,]    4    5    6 
[3,]    7    8    9 

(d) Determinant of a Matrix 
det_A <- det(A) 
print(det_A) 

Output: 
 [1] 0 

4.5.4. Combining Matrices 

(a) Row Binding 
A_new <- rbind(A, c(10, 11, 12)) 
print(A_new) 

Output: 
      [,1] [,2] [,3] 
[1,]    1    4    7 
[2,]    2    5    8 
[3,]    3    6    9 
[4,]   10   11   12 

(b) Column Binding 
B_new <- cbind(A, c(10, 11, 12)) 
print(B_new) 

Output: 

     [,1] [,2] [,3] [,4] 

[1,]    1    4    7   10 

[2,]    2    5    8   11 

[3,]    3    6    9   12 

4.5.5. Diagonal Matrix 
diag_matrix <- diag(c(1, 2, 3)) 
print(diag_matrix) 

Output: 

    [,1] [,2] [,3] 

[1,]    1    0    0 

[2,]    0    2    0 

[3,]    0    0    3 

4.5.6. Extract Diagonal Elements 
diag_elements <- diag(A) 
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print(diag_elements) 

Output: 
[1] 1 5 9 

4.5.7. Identity Matrix 
identity_matrix <- diag(3) 
print(identity_matrix) 

Output: 
     [,1] [,2] [,3] 

[1,]    1    0    0 

[2,]    0    1    0 

[3,]    0    0    1 

4.5.8. Apply Functions to Rows/Columns 

(a) Row Sums 
row_sums <- rowSums(A) 
print(row_sums) 

Output: 
 
[1] 12 15 18 

(b) Column Means 
 
col_means <- colMeans(A) 
print(col_means) 
 

Output: 
[1] 2 5 8 

(c) Using apply() 
 
# Sum of each row 
apply(A, 1, sum) 
 
# Mean of each column 
apply(A, 2, mean) 

Output: 

[1] 12 15 18 

[1] 2 5 8 
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4.5. 9. Checking Matrix Dimensions 
dim(A) 
nrow(A) 
ncol(A) 

Output: 

[1] 3 3 

[1] 3 

[1] 3 

4.5.10. Reshaping a Matrix 
reshape_A <- matrix(A, nrow = 1) 
print(reshape_A) 

Output: 

     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] 

[1,]    1    2    3    4    5    6    7    8    9 

Summary Table 

Facility 
R Function / 
Operator 

                Description 

Matrix Creation matrix() Create a matrix 

Access Elements [] 
Access specific elements, rows, 
columns 

Addition/Subtraction +, - Element-wise addition and subtraction 

Element-wise Multiplication * Element-wise multiplication 

Matrix Product %*% Matrix multiplication 

Transpose t() Transpose of a matrix 

Determinant det() Determinant of a square matrix 

Inverse solve() Inverse of a square matrix 

Combine Rows/Columns rbind(), cbind() Bind matrices by rows or columns 

Diagonal Matrix diag() Create a diagonal matrix 

Row/Column Sums and 
Means 

rowSums(), 
colMeans() 

Compute sums and means 

Apply Function to Rows/Cols apply() 
Apply a function across rows or 
columns 
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Facility 
R Function / 
Operator 

                Description 

Matrix Dimensions dim(), nrow(), ncol() Get matrix dimensions 

These matrix facilities allow R users to perform efficient data manipulation and mathematical 
computations, making matrices a powerful tool in data analysis, statistical modeling, and 
machine learning. 

4.6  FORMING PARTITIONED MATRICES: 

4.6.1. Partitioned Matrices 

A partitioned matrix is a matrix that is divided into smaller sub-matrices or blocks. This is 
often done to simplify complex matrix operations or organize data efficiently. 

Simple Example in R: 
# Defining sub-matrices (blocks) 
A11 <- matrix(c(1, 2, 3, 4), nrow = 2) 
A12 <- matrix(c(5, 6), nrow = 2) 
A21 <- matrix(c(7, 8), nrow = 1) 
A22 <- matrix(c(9), nrow = 1) 
 
# Combining the blocks to form a partitioned matrix 
A_upper <- cbind(A11, A12) # Combining A11 and A12 horizontally 
A_lower <- cbind(A21, A22) # Combining A21 and A22 horizontally 
 
Partitioned_Matrix <- rbind(A_upper, A_lower) # Combining the two rows vertically 
 
print(Partitioned_Matrix) 

Output: 
     [,1] [,2] [,3] [,4] 
[1,]    1    3    5    6 
[2,]    2    4    5    6 
[3,]    7    8    9    9 
 

4.6.2. cbind()  

The cbind() function in R is used to combine two or more matrices, vectors, or data 
frames by columns. 

Syntax: 
 
cbind(matrix1, matrix2, ...) 

Example 1: Combining Matrices by Columns 
A <- matrix(1:4, nrow = 2) 
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B <- matrix(5:8, nrow = 2) 
 
C <- cbind(A, B) 
print(C) 

Output: 
     [,1] [,2] [,3] [,4] 
[1,]    1    3    5    7 
[2,]    2    4    6    8 

Each matrix is attached column-wise. 

Example 2: Combining Vectors by Columns 
v1 <- c(1, 2, 3) 
v2 <- c(4, 5, 6) 
 
C <- cbind(v1, v2) 
print(C) 

Output: 
     v1 v2 
[1,]  1  4 
[2,]  2  5 
[3,]  3  6 

4.6.3. rbind() – Row Binding 

The rbind() function in R is used to combine two or more matrices, vectors, or data 
frames by rows. 

Syntax: 

rbind(matrix1, matrix2, ...) 

Example 1: Combining Matrices by Rows 
A <- matrix(1:4, nrow = 2) 
B <- matrix(5:8, nrow = 2) 
 
D <- rbind(A, B) 
print(D) 

Output: 
     [,1] [,2] 
[1,]    1    3 
[2,]    2    4 
[3,]    5    7 
[4,]    6    8 

Each matrix is attached row-wise. 
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Example 2: Combining Vectors by Rows 
v1 <- c(1, 2, 3) 
v2 <- c(4, 5, 6) 
 
D <- rbind(v1, v2) 
print(D) 

Output: 
   [,1] [,2] [,3] 
v1    1    2    3 
v2    4    5    6 
 

4.6.4. Combining rbind() and cbind() Together 

Sometimes, you may need to use both functions to form partitioned matrices. 

Example: 
A1 <- matrix(c(1, 2, 3, 4), nrow = 2) 
A2 <- matrix(c(5, 6), nrow = 2) 
B1 <- matrix(c(7, 8), nrow = 1) 
B2 <- matrix(c(9), nrow = 1) 
 
Upper <- cbind(A1, A2) 
Lower <- cbind(B1, B2) 
 
Partitioned_Matrix <- rbind(Upper, Lower) 
 
print(Partitioned_Matrix) 
 

Key Points to Remember: 

Function Purpose Example Use Case 

cbind() Combine matrices/vectors by columns 
Add new features (columns) to 

data 

rbind() Combine matrices/vectors by rows 
Add new observations (rows) 

to data 

Partitioned 
Matrix 

Divide a matrix into blocks for efficient 
computation 

Handling large data blocks in 
sections 

 

4.7 SUMMARY: 

Matrices are fundamental data structures used in mathematical computations and data 
analysis. Understanding matrix creation, manipulation, and operations is essential for 
working efficiently with numerical data. Functions like matrix(), cbind(), rbind(), diag(), and 
apply() simplify matrix handling and computations. 
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4.8  SELF ASSESSMENT QUESTIONS: 
 

1. What is a matrix in R? How is it different from a data frame? 
2. What is the difference between cbind() and rbind()? 
3. How do you create an identity matrix in R? 
4. Create a 3x3 matrix with numbers from 1 to 9, and: 

a) Extract the second row. 
b) Find the transpose of the matrix. 
c) Extract the diagonal elements. 

5. Given two matrices A and B of the same dimension, perform element-wise addition, 
multiplication, and matrix multiplication. 

6. Create a diagonal matrix with values (2, 4, 6) along the diagonal. 
7. Use the apply() function to compute the sum of each row and the mean of each 

column of a matrix. 
8. Combine two matrices both row-wise and column-wise.  

 
4.9  SUGGESTED READINGS: 
 

1) Dr. Mark Gardener (2012): Beginning R – The Statistical Programming Language, 
Wiley India Pvt Ltd. 

2) W. N. Venables and D. M. Smith(2016): An Introduction to R 

3) J.P. Lander(2014):R for Everyone, Pearson Publications 

4) Garrett Grolemund : Hands-On Programming with R 

5) Michael J. Crawley: The R Book 
 

                                       Dr. SYED JILANI 

 

 

 

 

 

 

 

 

 

 

 

 

 



LESSON 5 

R-LISTS 
 

OBJECTIVES: 

After studying this unit, you should be able to:  
 Understand the importance of Lists 
 Students should have a solid understanding about the concept of Lists 
 Further, the student will be familiar with data frames. 

 
STRUCTURE 

5.1 Creating a List 

5.2 Naming List Elements 

5.3 Accessing List Elements 

5.4 Manipulating List Elements 

5.5 Merging Lists 

5.6 Converting List to Vector 

5.7 Data Frames 

 5.7.1 Create Data Frame 

5.8 Extract Data from Data Frame 

 5.8.1 Expand Data Frame 
 5.8.2 Add Row 
 

5.9 Attach ( ) data Frames 

5.10 Conclusion 

5.11 Self Assessment Questions 

5.12 Further Readings 

 

5.1 CREATING A LIST: 
 
Lists are the R objects which contain elements of different types like - numbers, strings, 
vectors and another list inside it. A list can also contain a matrix or a function as its elements. 
List is created using list() function. 
 
Following is an example to create a list containing strings, numbers, vectors and a logical 
values 
# Create a list containing strings, numbers, vectors and a logical values. 
list_data <- list("Red", "Green", c(21,32,11), TRUE, 51.23, 119.1) 
print(list_data) 
When we execute the above code, it produces the following result: 
[[1]] 
[1] "Red" 
[[2]] 
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[1] "Green" 
[[3]] 
[1] 21 32 11 
[[4]] 
[1] TRUE 
[[5]] 
[1] 51.23 
[[6]] 
[1] 119.1 
 
5.2 NAMING LIST ELEMENTS: 
 
The list elements can be given names and they can be accessed using these names. 
# Create a list containing a vector, a matrix and a list. 
list_data <- list(c("Jan","Feb","Mar"), matrix(c(3,9,5,1,-2,8), nrow=2), 
list("green",12.3)) 
# Give names to the elements in the list. 
names(list_data) <- c("1st Quarter", "A_Matrix", "A Inner list") 
# Show the list. 
print(list_data) 
When we execute the above code, it produces the following result: 
$`1st_Quarter` 
[1] "Jan" "Feb" "Mar" 
$A_Matrix 
[,1] [,2] [,3] 
[1,] 3 5 -2 
[2,] 9 1 8 
$A_Inner_list 
$A_Inner_list[[1]] 
[1] "green" 
$A_Inner_list[[2]] 
[1] 12.3 
 
5.3 ACCESSING LIST ELEMENTS: 
 
Elements of the list can be accessed by the index of the element in the list. In case of 
named lists it can also be accessed using the names. 
We continue to use the list in the above example: 
 
# Create a list containing a vector, a matrix and a list. 
list_data <- list(c("Jan","Feb","Mar"), matrix(c(3,9,5,1,-2,8), nrow=2), 
list("green",12.3)) 
 
# Give names to the elements in the list. 
names(list_data) <- c("1st Quarter", "A_Matrix", "A Inner list") 
# Access the first element of the list. 
print(list_data[1]) 
# Access the thrid element. As it is also a list, all its elements will be 
printed. 
print(list_data[3]) 
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# Access the list element using the name of the element. 
print(list_data$A_Matrix) 
When we execute the above code, it produces the following result: 
$`1st_Quarter` 
[1] "Jan" "Feb" "Mar" 
$A_Inner_list 
$A_Inner_list[[1]] 
[1] "green" 
$A_Inner_list[[2]] 
[1] 12.3 
[,1] [,2] [,3] 
[1,] 3 5 -2 
[2,] 9 1 8 
 
5.4 MANIPULATING LIST ELEMENTS: 
 
We can add, delete and update list elements as shown below. We can add and delete 
elements only at the end of a list. But we can update any element. 
# Create a list containing a vector, a matrix and a list. 
 
list_data <- list(c("Jan","Feb","Mar"), matrix(c(3,9,5,1,-2,8), nrow=2), 
list("green",12.3)) 
# Give names to the elements in the list. 
names(list_data) <- c("1st Quarter", "A_Matrix", "A Inner list") 
# Add element at the end of the list. 
list_data[4] <- "New element" 
print(list_data[4]) 
# Remove the last element. 
list_data[4] <- NULL 
# Print the 4th Element. 
print(list_data[4]) 
# Update the 3rd Element. 
list_data[3] <- "updated element" 
print(list_data[3]) 
When we execute the above code, it produces the following result: 
[[1]] 
[1] "New element" 
$ 
NULL 
$`A Inner list` 
[1] "updated element" 
 
5.5 MERGING LISTS: 
 
You can merge many lists into one list by placing all the lists inside one list() function. 
# Create two lists. 
list1 <- list(1,2,3) 
list2 <- list("Sun","Mon","Tue") 
# Merge the two lists. 
merged.list <- c(list1,list2) 
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# Print the merged list. 
print(merged.list) 
When we execute the above code, it produces the following result : 
[[1]] 
[1] 1 
[[2]] 
[1] 2 
[[3]] 
[1] 3 
[[4]] 
[1] "Sun" 
[[5]] 
[1] "Mon" 
[[6]] 
[1] "Tue" 
 
5.6 CONVERTING LIST TO VECTOR: 
 
A list can be converted to a vector so that the elements of the vector can be used for further 
manipulation. All the arithmetic operations on vectors can be applied after the list is 
converted into vectors. To do this conversion, we use the unlist() function. It takes the 
list as input and produces a vector. 
 
# Create lists. 
list1 <- list(1:5) 
print(list1) 
list2 <-list(10:14) 
print(list2) 
# Convert the lists to vectors. 
v1 <- unlist(list1) 
v2 <- unlist(list2) 
R Programming 
59 
print(v1) 
print(v2) 
# Now add the vectors 
result <- v1+v2 
print(result) 
When we execute the above code, it produces the following result : 
[[1]] 
[1] 1 2 3 4 5 
[[1]] 
[1] 10 11 12 13 14 
[1] 1 2 3 4 5 
[1] 10 11 12 13 14 
[1] 11 13 15 17 19 
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5.7  DATA FRAMES: 

A data frame is a table or a two-dimensional array-like structure in which each column 
contains values of one variable and each row contains one set of values from each column. 
Following are the characteristics of a data frame. 
 The column names should be non-empty. 
 The row names should be unique. 
 The data stored in a data frame can be of numeric, factor or character type. 
 Each column should contain same number of data items. 

 
5.7.1 Create Data Frame 
 
# Create the data frame. 
emp.data <- data.frame( 
emp_id = c (1:5), 
emp_name = c("Rick","Dan","Michelle","Ryan","Gary"), 
salary = c(623.3,515.2,611.0,729.0,843.25), 
start_date = as.Date(c("2012-01-01","2013-09-23","2014-11-15","2014-05- 
11","2015-03-27")), 
stringsAsFactors=FALSE 
) 
# Print the data frame. 
print(emp.data) 
When we execute the above code, it produces the following result: 
emp_id emp_name salary start_date 
1 1 Rick 623.30 2012-01-01 
2 2 Dan 515.20 2013-09-23 
3 3 Michelle 611.00 2014-11-15 
4 4 Ryan 729.00 2014-05-11 
5 5 Gary 843.25 2015-03-27 
 
Get the Structure of the Data Frame 
 
The structure of the data frame can be seen by using str() function. 
# Create the data frame. 
emp.data <- data.frame( 
emp_id = c (1:5), 
emp_name = c("Rick","Dan","Michelle","Ryan","Gary"), 
salary = c(623.3,515.2,611.0,729.0,843.25), 
start_date = as.Date(c("2012-01-01","2013-09-23","2014-11-15","2014-05- 
11","2015-03-27")), 
stringsAsFactors=FALSE 
) 
 
# Get the structure of the data frame. 
str(emp.data) 
When we execute the above code, it produces the following result: 
 
'data.frame': 5 obs. of 4 variables: 
$ emp_id : int 1 2 3 4 5 
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$ emp_name : chr "Rick" "Dan" "Michelle" "Ryan" ... 
$ salary : num 623 515 611 729 843 
$ start_date: Date, format: "2012-01-01" "2013-09-23" "2014-11-15" "2014-05- 
 
Summary of Data in Data Frame: 
 
The statistical summary and nature of the data can be obtained by applying 
summary() function. 
 
# Create the data frame. 
emp.data <- data.frame( 
emp_id = c (1:5), 
emp_name = c("Rick","Dan","Michelle","Ryan","Gary"), 
salary = c(623.3,515.2,611.0,729.0,843.25), 
start_date = as.Date(c("2012-01-01","2013-09-23","2014-11-15","2014-05- 
11","2015-03-27")), 
stringsAsFactors=FALSE 
) 
# Print the summary. 
print(summary(emp.data)) 
 
When we execute the above code, it produces the following result: 
emp_id emp_name salary start_date 
Min. :1 Length:5 Min. :515.2 Min. :2012-01-01 
1st Qu.:2 Class :character 1st Qu.:611.0 1st Qu.:2013-09-23 
Median :3 Mode :character Median :623.3 Median :2014-05-11 
Mean :3 Mean :664.4 Mean :2014-01-14 
3rd Qu.:4 3rd Qu.:729.0 3rd Qu.:2014-11-15 
Max. :5 Max. :843.2 Max. :2015-03-27 
 
5.8  EXTRACT DATA FROM DATA FRAME: 
 
Extract specific column from a data frame using column name. 
 
# Create the data frame. 
emp.data <- data.frame( 
emp_id = c (1:5), 
emp_name = c("Rick","Dan","Michelle","Ryan","Gary"), 
salary = c(623.3,515.2,611.0,729.0,843.25), 
start_date = as.Date(c("2012-01-01","2013-09-23","2014-11-15","2014-05- 
11","2015-03-27")), 
stringsAsFactors=FALSE 
) 
 
# Extract Specific columns. 
result <- data.frame(emp.data$emp_name,emp.data$salary) 
print(result) 
 
When we execute the above code, it produces the following result: 
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emp.data.emp_name emp.data.salary 
1 Rick 623.30 
2 Dan 515.20 
3 Michelle 611.00 
4 Ryan 729.00 
5 Gary 843.25 
Extract the first two rows and then all columns 
 
# Create the data frame. 
emp.data <- data.frame( 
emp_id = c (1:5), 
emp_name = c("Rick","Dan","Michelle","Ryan","Gary"), 
salary = c(623.3,515.2,611.0,729.0,843.25), 
start_date = as.Date(c("2012-01-01","2013-09-23","2014-11-15","2014-05-11","2015-03-
27")),stringsAsFactors=FALSE) 
 
# Extract first two rows. 
result <- emp.data[1:2,] 
print(result) 
 
When we execute the above code, it produces the following result: 
 
 
emp_id emp_name salary start_date 
1 1 Rick 623.3 2012-01-01 
1 2 Dan 515.2 2013-09-23 
 
Extract 3rd and 5th row with 2nd and 4th column 
# Create the data frame. 
emp.data <- data.frame( 
emp_id = c (1:5), 
emp_name = c("Rick","Dan","Michelle","Ryan","Gary"), 
salary = c(623.3,515.2,611.0,729.0,843.25), 
start_date = as.Date(c("2012-01-01","2013-09-23","2014-11-15","2014-05-11","2015-03-
27")),stringsAsFactors=FALSE) 
 
# Extract 3rd and 5th row with 2nd and 4th column. 
result <- emp.data[c(3,5),c(2,4)] 
print(result) 
 
When we execute the above code, it produces the following result: 
 
emp_name start_date 
3 Michelle 2014-11-15 
5 Gary 2015-03-27 
   
5.8.1 Expand Data Frame 
A data frame can be expanded by adding columns and rows. 
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Add Column 
 
Just add the column vector using a new column name. 
 
# Create the data frame. 
emp.data <- data.frame( 
emp_id = c (1:5), 
emp_name = c("Rick","Dan","Michelle","Ryan","Gary"), 
salary = c(623.3,515.2,611.0,729.0,843.25), 
start_date = as.Date(c("2012-01-01","2013-09-23","2014-11-15","2014-05-11","2015-03-
27")),stringsAsFactors=FALSE) 
 
# Add the "dept" coulmn. 
emp.data$dept <- c("IT","Operations","IT","HR","Finance") 
v <- emp.data 
print(v) 
When we execute the above code, it produces the following result: 
 
emp_id emp_name salary start_date dept 
1 1 Rick 623.30 2012-01-01 IT 
2 2 Dan 515.20 2013-09-23 Operations 
3 3 Michelle 611.00 2014-11-15 IT 
4 4 Ryan 729.00 2014-05-11 HR 
5 5 Gary 843.25 2015-03-27 Finance 
 
 5.8.2 Add Row 
 
To add more rows permanently to an existing data frame, we need to bring in the new 
rows in the same structure as the existing data frame and use the rbind() function. 
In the example below we create a data frame with new rows and merge it with the existing 
data frame to create the final data frame. 
 
# Create the first data frame. 
emp.data <- data.frame( 
emp_id = c (1:5), 
emp_name = c("Rick","Dan","Michelle","Ryan","Gary"), 
salary = c(623.3,515.2,611.0,729.0,843.25), 
start_date = as.Date(c("2012-01-01","2013-09-23","2014-11-15","2014-05- 
11","2015-03-27")), 
dept=c("IT","Operations","IT","HR","Finance"), 
R Programming 
78 
stringsAsFactors=FALSE 
) 
# Create the second data frame 
emp.newdata <- data.frame( 
emp_id = c (6:8), 
emp_name = c("Rasmi","Pranab","Tusar"), 
salary = c(578.0,722.5,632.8), 
start_date = as.Date(c("2013-05-21","2013-07-30","2014-06-17")), 
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dept = c("IT","Operations","Fianance"), 
stringsAsFactors=FALSE 
) 
# Bind the two data frames. 
emp.finaldata <- rbind(emp.data,emp.newdata) 
print(emp.finaldata) 
When we execute the above code, it produces the following result: 
emp_id emp_name salary start_date dept 
1 1 Rick 623.30 2012-01-01 IT 
2 2 Dan 515.20 2013-09-23 Operations 
3 3 Michelle 611.00 2014-11-15 IT 
4 4 Ryan 729.00 2014-05-11 HR 
5 5 Gary 843.25 2015-03-27 Finance 
6 6 Rasmi 578.00 2013-05-21 IT 
7 7 Pranab 722.50 2013-07-30 Operations 

8 8 Tusar 632.80 2014-06-17 Fianance 

5.9 ATTACH DATA FRAMES: 
 

The attach() function offers a solution to this: it takes a data frame as an argument and places 
it in the search path at position 2. 
 
So unless there are variables in position 1 that are exactly the same as the ones from the data 
frame that you have inputted, the variables are considered as variables that can be 
immediately called on. 
 
Note that the search path is in fact the order in which R accesses files. You can look this up 
by entering the search() function. 
 
# Look up the search path 
search() 
# Attach the `writers_df` 

attach(writers_df) 

# Alternatively, use `with()` to attach `writers_df` 

with(writers_df, c("Age.At.Death", "Age.As.Writer", "Name", "Surname", "Gender", 
"Death")) 

# Return `writers_df` 

writers_df 

> # Look up the search path 

>search() 

[1] ".GlobalEnv"        "package:stats"     "package:graphics"  

[4] "package:grDevices" "package:utils"     "package:datasets"  

[7] "package:methods"   "Autoloads"         "package:base" 
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> # Attach the `writers_df` 

> attach(writers_df) 

The following objects are masked _by_ .GlobalEnv: 

Age.As.Writer, Age.At.Death, Death, Gender, Name, Surname 

The following objects are masked from writers_df (pos = 3): 

Age.As.Writer, Age.At.Death, Death, Gender, Name, Surname 

> # Alternatively, use `with()` to attach `writers_df` 

>with(writers_df, c("Age.At.Death", "Age.As.Writer", "Name", "Surname", "Gender", 
"Death")) 

[1] "Age.At.Death"  "Age.As.Writer" "Name"          "Surname"       

[5] "Gender"        "Death"         

 

> # Return `writers_df` 

>writers_df 

Age.At.DeathAge.As.Writer  Name Surname Gender      Death 

1           22            16  John     Doe   MALE 2015-05-10 

2           40            18 Edgar     Poe   MALE 1849-10-07 

3           72            36  Walt Whitman   MALE 1892-03-26 

4           41            36  Jane  Austen FEMALE 1817-07-18 

Detach () 
detach () function just reverses the function of attach().It removes the specified variable from 
the global environment, so you cannot access the variable directly as before. 
 
5.10  SUMMARY: 
 

Understanding lists and data frames is crucial for efficient data management and 
analysis in R. Lists allow for storing diverse types of data in a single structure, whereas data 
frames are fundamental for handling tabular data, which is widely used in data analysis. 
Mastery of these data structures equips students with the capability to manipulate, merge, and 
transform data efficiently, laying the groundwork for more advanced data analysis and 
statistical operations in R. 

 
5.11 SELF ASSESSMENT QUESTIONS: 
 

1. What is a list in R, and how is it different from a vector? 
2. Explain the process of naming elements in a list. 
3. How can you access and manipulate elements in a list? 
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4. Describe the steps involved in merging two lists in R. 
5. What are data frames in R? How are they different from matrices? 
6. Write an R script to create a list containing a vector, a matrix, and a character string. 

Access the second element of the list. 
7. Create a data frame containing the names, ages, and marks of five students. Extract 

the 'marks' column from the data frame. 
8. Write a code snippet to add a new row to an existing data frame. 

 
5.12 SUGGESTED READINGS: 
 

1) Dr. Mark Gardener (2012): Beginning R – The Statistical Programming Language, 
Wiley India Pvt Ltd. 

2) W. N. Venables and D. M. Smith(2016): An Introduction to R 
3) J.P. Lander(2014):R for Everyone, Pearson Publications 

4) Garrett Grolemund : Hands-On Programming with R 

5) Michael J. Crawley: The R Book 
            

  Dr. SYED JILANI 

 



LESSON 6 

READING AND GETTING DATA INTO R USING 
FILES 

OBJECTIVES: 

After studying this unit, you should be able to:  
 Understand the Process of Reading and Importing Data into R. 
 Students should have a solid understanding about the reading and getting data into r 

using files. 
 The student will learn a reading and getting data into r using files. 
 Further, the student will be familiar reading and getting data into r using files. 

 
STRUCTURE: 
 
6.1  Reading and getting data into R using files  

6.2  Using the combine Command for Making Data 

6.3  Reading Bigger data Files 

6.4  Alternative Commands for Reading Data in R 

6.5  Saving Data  using files 

      6.5.1 Save ( ) command 
6.5.2 Load ( ) command 
 

6.6  Writing data using files 

        6.6.1 Write. table ( ) 
        6.6.2 File. choose() 
 

6.7  Reading a data using files 

6.8  Conclusion 

6.9  Self Assessment Questions 

6.10 Further Readings 

 

6.1 READING AND GETTING DATA INTO R USING FILES:  
 
So far you have looked at some simple math. More often you will have sets of data to 
examine (that is, samples) and will want to create more complex series of numbers to work 
on. You cannot perform any analyses if you do not have any data so getting data into R is a 
very important task. This next section focuses on ways to create these complex samples and 
get data into R, where you are able to undertake further analyses. 
 
6.3 USING THE COMBINE COMMAND FOR MAKING DATA: 

 
The simplest way to create a sample is to use the c() command. You can think of this as short 
forcombine or concatenate, which is essentially what it does. The command takes the 
following form: 
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c(item.1, item.2, item.3, item .n) 
 
Everything in the parentheses is joined up to make a single item. More usually you will 
assign the joined-up items to a named object: 
sample.name = c(item.1, item.2, item.3, item.n) 
 
             This is much like you did when making simple result objects, except now your 
sample objects consist of several bits rather than a single value. 
 
6.3 READING BIGGER DATA FILES: 
 

The scan() command is helpful to read a simple vector. More often though, you will 
have complicated data files that contain multiple items (in other words two-dimensional items 
containing both rows and columns). Although it is possible to enter large amounts of data 
directly into R, it is more likely that you will have your data stored in a spreadsheet. When 
you are sent data items, the spreadsheet is also the most likely format you will receive. R 
provides the means to read data that is stored in a range of text formats, all of which the 
spreadsheet is able to create. The read.csv () command. 
 
In most cases you will have prepared data in a spreadsheet. Your dataset could be quite large 
and it would be tedious to use the clipboard. When you have more complex data it is better to 
use a new command—read.csv (): 
names toread.csv(  ) 
       
   As you might expect, this looks for a CSV file and reads the enclosed data into R. You can 
add a variety of additional instructions to the command. For example: 
 
read. csv(file, sep = ',', header = TRUE, row. names) 
 
         You can replace the file with any filename as before. By default the separator is set to a 
comma but you can alter this if you need to. This command expects the data to be in columns, 
and for each column to have a helpful name. The instruction header = TRUE, the default, 
reads the first row of the CSV file and sets this as a name for each column. You can override 
this with header = FALSE. 
 
          The row.names part allows you to specify row names for the data; generally this will be 
a column in the dataset (the first one is most usual and sensible). You can set the rownames 
be one of the columns by setting row.names = n, where n is the column number. 
Some simple example data are shown in Table 2-2. Here you can see two columns; each one 
is a variable. The first column is labelled   abund; this is the abundance of some water-living 
organism. The second column is labelled   flow and represents the flow of water where the 
organism was found. 
 
Simple Data from a Two Column Spreadsheet 
 

ABUND FLOW 
9 2 

25 3 
15 5 
2 9 
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14 14 
25 24 
24 29 
47 34 

 
In this case there are only two columns and it would not take too long to use the 

scan() command to transfer the data into R. However, it makes sense to keep the two columns 
together and import them to R as a single entity. To do so, perform the following steps: 
 
1. If you have a file saved in a proprietary format (for example, XLS), save the data as a CSV 
File instead. 
2. Now assign the file a sensible name and use the read.csv() command as follows: 
>fw = read.csv(file.choose()) 
3. Select the file from the browser window. If you are using Linux, the filename must be 
typedin full. Because the read.csv() command is expecting the data to be separated with 
commas,you do not need to specify that. The data has headings and because this is also the 
default, you do not need to tell R anything else. 
 
4.>fw 
  Abund flow 
1 9      2 
2 25     3 
3 15     5 
4 2      9 
5 14    14 
6 25    24 
7 24     2 
8 47    34 
 
You can see that each row is labelled with a simple index number; these have no great 
relevance but can be useful when there are a lot of data. 
 
In the general, the read.csv () command is pretty useful because the CSV format is most 
easily produced by a wide variety of computer programs, spreadsheets, and is eminently 
portable. Using CSV means that you have fewer options to type into R and consequently less 
typing. 
 
6.4 ALTERNATIVE COMMANDS FOR READING DATA IN R: 
 
There are many other formats besides CSV in which data can exist and in which other 
characters, including spaces and tabs, can separate data. Consequently, the read.table() 
command is actually the basic R command for reading data. It enables you to read most 
formats of plain-text data. However, R provides variants of the command with certain 
defaults to make it easier when specifying some common data formats, like read.csv() for 
CSV files. Since most data is CSV though, the read.csv()is the most useful of these variants. 
But you may run into alternative formats, and the following list outlines: 
The basic read.table() as well as other commands you can use to read various types of data: 
 
In this case you have to specify the additional instructions explicitly. The defaults are set to 
header = FALSE, sep = “ “ (a single space), and dec = “.”, 
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For example: 
data1 data2  data3 
1          2        4 
In the following example the data are separated by simple spaces. The read. table ( ) 
command is a more generalized command and you could use this at any time to read your 
data. 
4 5 3 
3 4 5 
3 6 6 
4 5 9 
>my.ssv = read.table(file.choose(), header = TRUE) 
>my.ssv = read.csv(file.choose(), sep = ' ') 
 
The next example shows data separated by tabs. If you have tab-separated values you can use 
the read.delim() command. In this command R assumes that you still have column heading 
names but this time the separator instruction is set to sep = “\t” (a tab character) by default: 
 
data1 data2 data3 
1      2      4 
4      5      3 
3      4      5 
3      6      6 
4      5      9 
>my.tsv = read.delim(file.choose()) 
>my.tsv = read.csv(file.choose(), sep = '\t') 
>my.tsv = read.table(file.choose(), header = TRUE, sep = '\t') 
 
The next example also shows data separated by tabs. In some countries the decimal point 
character is not a period but a comma, and a semicolon often separates data values. If you 
have a file like this you can use another variant, read.csv2(). Here the defaults are set to 
sep = “;”, header = TRUE, and dec = “,”. 
day data1 data2 data3 
mon 1 2 4 
tue 4 5 3 
wed 3 4 5 
thu 3 6 6 
fri 4 5 9 
>my.list = read.delim(file.choose(), row.names = 1) 
>my.list = read.csv(file.choose(), row.names = 1, sep = '\t') 
>my.list = read.table(file.choose(), row.names = 1, header = TRUE,sep = '\t' 
 
6.4 SAVING DATA USING FILES: 

 
It is not really convenient to quit R every time you want to save your work to disk. 

Sometimes, if you are working on several items or projects at a time you may even want to 
save these separately. 
Fortunately, R provides a solution; you can save individual objects, or indeed all the objects, 
to disk at any time using the save() command. 
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6.5.1 Save ( ) command: 
 
The save() command operates like so: 
save(list, file = 'filename') 
 
You need to specify a filename and it must be in quotes. The file will be saved to the current 
working directory by default. The list instruction can be in one of two forms: you can simply 
type the names of the objects you want to save separated with commas or you can link to a 
list of names created by some other means. Look at the examples that follow: 
 
>save(bf, bf.lm, bf.beta, file = 'Desktop/butterfly.RData') 
>save(list=ls(pattern='^bf'),file = 'Desktop/butterfly.RData') 
 
In the first case three objects were specified (bf, bf.lm, and bf.beta), and in the second 
examplethe ls() command was used to create a list of objects beginning with bf. In both cases, 
the outputfile was saved to the Desktop folder rather than the default. 
 
6.5.2 Load( ) command: 
 
When you save a file to disk, R saves the data in a binary format. This means that the file 
cannot be read by a regular word processor or text editor. You can read one of these binary 
files from within R using the load() command: 
 
load(file = ‘filename.Rdata’) 
 
You need to put the filename in quotes (single or double, as long as the pair match) and 
remember to include the extension. The usual extension to use is .Rdata. If the file is not in 
your working directory the full path must be entered (all in the quotes). Alternatively, you 
can use the file.choose() instruction and select your file if you are using Windows or 
Macintosh operating systems. 
 
load(file = file.choose()) 
 
Once the file is read, any data objects that were saved in it are available and can be seen by 
using the ls() command. 
It is also possible to load binary data items directly from your operating system by double-
clicking the file you want. In Windows and Macintosh systems the .Rdata file extension 
should automatically become associated with R when you install the program. This is a useful 
way to open R because the only data that is loaded will be the data within the .Rdata file. 
 
6.6  WRITING DATA USING FILES: 
 
If you have a vector, you can use the write() command. The basic form of the command is 
thefollowing: 
 
write(x, file = "data", ncolumns = if(is.character(x)) 1 else 5, sep = " ") 
 
This looks a bit complicated because the ncolumns = part contains a conditional statement. 
This is because the if() statement creates a file with multiple columns according to the type of 
data. If the data are text, a single column is created. If the data are numeric, five columns are 
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created (you can alter the number of columns). The items are separated by a space by default; 
you can change this by altering the sep = instruction. For example, the following code snippet 
contains a list of numbers. 
 
The write() command sees that these are numeric and creates five columns by default. The 
data areseparated with commas. 
 
> data7 
[1] 23.0 17.0 12.5 11.0 17.0 12.0 14.5 9.0 11.0 9.0 12.5 14.5 17.0 8.0 21.0 
 
>write(data7, file = 'Desktop/data7.txt', sep = ',') 
 
The resulting file looks like the following if viewed in a basic text editor: 
23,17,12.5,11,17 
12,14. ,9,11,9 
12.5,14.5,17,8,21 
 
If you want to create a single column you set the ncolumns = instruction to 1. If you want to 
createa single row you need to know how many items there are and set the number of 
columns to thisvalue. You can do this automatically like so: 
 
>write(data7, file = 'Desktop/data7.txt', sep = ',', ncolumns = length(data7)) 
 
Here a command called length() was used, which determines how “long” the vector of data 
is.The resulting file looks like the following: 
 
23,17,12.5,11,17,12,14.5,9,11,9,12.5,14.5,17,8,21 
 
6.6.1 Write. table( ): 
 
If you have a matrix object or a data frame, you need to use the write.table() command. The 
basic command has various instructions that can be set as follows: 
 
write.table(mydata, file = 'filename', row.names = TRUE, sep = ' ', col.names=TRUE) 
 
If you want to make a CSV file, you could use the alternative write.csv() command. This is 
essentially the same but the default settings are slightly different: 
 
write.csv(mydata, file = 'filename', row.names = TRUE, sep = ',', col.names =TRUE) 
 
The write.table() and write.csv() commands are most useful to save complex data items 
thatcontain multiple columns. 
 
6.6.2 File.choose(): 
 
The file.choose() instruction is useful because you can select files from different directories 
without having to alter the working directory or type the names in full. 
Using the file.choose() instruction does not work on Linux operating systems. 
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6.7  READING A DATA USING FILES: 
 
To read a file with the scan( ) command you simply add file = ‘filename’ to the command. 
For example: 

> data6 = scan(file = 'test data.txt') 
Read 15 items 
> data6 
[1] 23.0 17.0 12.5 11.0 17.0 12.0 14.5 9.0 11.0 9.0 12.5 14.5 17.0 8.0 21.0 
 

   In this example the data file is called test data.txt, which is plain text, and the numerical 
values are separated by spaces. Note that the filename must be enclosed in quotes (single or 
double). Of course you can use the what = and sep = instructions as appropriate. 
 
 6.8  SUMMARY: 
 

R provides a flexible and diverse set of tools for data input and output, 
accommodating various file types and dataset sizes. When working with large datasets, 
functions like fread() from data.table and read_csv() from readr offer significantly better 
performance compared to base R functions. The save() and load() commands enable efficient 
storage and retrieval of R objects, helping to preserve workspaces for future use. 
Additionally, the file.choose() function allows users to interactively select files, eliminating 
the need to manually specify file paths. 

 
6.9  SELF ASSESSMENT QUESTIONS: 

 
1. What is the purpose of the read.csv() function in R? Provide an example. 
2. Explain the use of the c() function in R. How is it different from read.table()? 
3. How would you optimize reading a large dataset in R? Mention any two functions. 
4. What are the alternatives to read.table() in R for reading data? List at least three. 
5. Explain the difference between save() and write.table() in R. 
6. Write an R script to: 
7. Read a CSV file. 
8. Display the first few rows. 
9. Save the data to an .RData file. 
10. How can file.choose() simplify the process of reading and writing data in R? 
11. What is the difference between load() and read.csv() functions in R? 

 
6.10 SUGGESTED READINGS: 
 

1) Dr. Mark Gardener (2012): Beginning R – The Statistical Programming Language, 
Wiley India Pvt Ltd. 

2) W. N. Venables and D. M. Smith(2016): An Introduction to R 
3) J.P. Lander(2014):R for Everyone, Pearson Publications 

4) Garrett Grolemund : Hands-On Programming with R 

5) Michael J. Crawley: The R Book 
            

     Dr. SYED JILANI 

 



                                         LESSON -7 

CONTROL STATEMENTS 
 
OBJECTIVES:  
 
After studying this unit, you should be able to:  

 Understand the importance of Decision Making Statements 
 Students should have a solid understanding about the Decision Making Statements 
 .To know the concepts of Decision Making Statements 
 To acquire knowledge about Control Statements  

 
STRUCTURE 
 

7.1  Introduction 

7.2  if-statements 

7.3  if-else statements 

7.4  if-else-if statement 

7.5  nested-if statements 

7.6 switch statement 

7.7 Conclusion 

7.8 Self Assessment Questions 

7.9 Further Readings 
 

7.1 INTRODUCTION: 
 
Decision-making statements, also known as conditional statements, are a fundamental 
component of programming languages, including R. They enable programmers to make 
decisions based on conditions, allowing code to execute different paths or actions depending 
on specific criteria. 
 
Decision-making statements are essential in programming because they: 
 
1. Enable conditional execution: Decision-making statements allow code to execute specific 
blocks of code only when certain conditions are met. 
2. Improve code flexibility: Decision-making statements enable code to adapt to different 
situations and inputs. 
3. Enhance code readability: Decision-making statements make code more readable by 
providing a clear structure and organization. 
Key Elements of Decision-Making Statements 
 
1. Condition: a logical expression that evaluates to TRUE or FALSE 
2. Action: a block of code that executes when the condition is TRUE 
3. Alternative action: a block of code that executes when the condition is FALSE 

By mastering decision-making statements, you'll be able to write more flexible, 
efficient, and effective code. 
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7.2 IF STATEMENT: 

The conditional if statement is used to test an expression. If the test_expression is TRUE, 
the statement gets executed. But if it’s FALSE, nothing happens. 

# syntax of if statement 
if (test_expression) { 
        statement 
} 

          Example: 

x<-c(8,3,-2,5) 
# without curly braces 
if(any(x<0))print("x contains negative numbers") 
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## [1] "x contains negative numbers" 
 
# with curly braces produces same result 
if(any(x<0)){ 
print("x contains negative numbers") 
} 
## [1] "x contains negative numbers" 
 
# an if statement in which the test expression is FALSE 
 
 
# does not produce any output 
y<-c(8,3,2,5) 
 
if(any(y<0)){ 
print("y contains negative numbers") 
} 

                            

7.3 IF...ELSE STATEMENT: 

The conditional if...else statement is used to test an expression similar to the if statement. 
However, rather than nothing happening if the test_expression is FALSE, the else part of the 
function will be evaluated. 

# syntax of if...else statement 
if(test_expression){ 
statement1 
}else{ 
statement2 
} 
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Example: 

# This test results in statement 1 being executed 
x<-c(8,3,-2,5) 
if(any(x<0)){ 
print("x contains negative numbers") 
}else{ 
print("x contains all positive numbers") 
} 
 
Output  
 [1] "x contains negative numbers" 

 
# This test results in statement 2 (or the else statement) being executed 

y<-c(8,3,2,5) 
if(any(y<0)){ 
print("y contains negative numbers") 
}else{ 
print("y contains all positive numbers") 
} 
 
Output  
 
[1] "y contains all positive numbers" 

             

                      
 
7.4 IF-ELSE-IF STATEMENT: 
 
The if-else if statement is a control structure in R that allows you to execute different blocks 
of code based on multiple conditions. 
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Syntax: 
 

if (condition1) { 
  # code to be executed if condition1 is TRUE 
} else if (condition2) { 
  # code to be executed if condition1 is FALSE and condition2 is TRUE 
} else { 
  # code to be executed if all conditions are FALSE 
} 

 
How it Works: 
1. The first condition (condition1) is checked. 
2. If condition1 is TRUE, the code inside the if block is executed. 
3. If condition1 is FALSE, the second condition (condition2) is checked. 
4. If condition2 is TRUE, the code inside the else if block is executed. 
5. If all conditions are FALSE, the code inside the else block is executed. 

 
Example: 
x <- 5 
if (x > 10) { 
  print("x is greater than 10") 
} else if (x == 5) { 
  print("x is equal to 5") 
} else { 
  print("x is less than 5") 
} 
 
output: 
This code will print "x is equal to 5". 
 

EXAMPLE 2 
num <- 10 
if (num > 10) { 
    print("Number is greater than 10") 
} else if (num < 10) { 
    print("Number is less than 10") 
} else { 
    print("Number is exactly 10") 
} 
 
Explanation 

1. If num > 10, it prints "Number is greater than 10". 
2. If num < 10, it prints "Number is less than 10". 
3. If neither condition is true (i.e., num == 10), it prints "Number is exactly 10". 
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FLOW CHART 

             
 
7.5 NESTED IF- ELSE STATEMENT: 
 

Placing one If Statement inside another If Statement is called as Nested If Else in R 
Programming. The R If else statement allows us to print different statements depending upon 
the expression result (TRUE, or FALSE). Sometimes we have to check further when the 
condition is TRUE. In these situations, we can use this Nested If Else concept 

The basic syntax of the Nested If Else Statement in R Programming language is as follows: 

if (Boolean_Expression 1)  { 
     #Boolean_Expression 1 result is TRUE then, it will check for Boolean_Expression 2 
     if (Boolean_Expression 2)  { 
          #Boolean_Expression 2 result is TRUE, then these statements will be executed 
          Boolean_Expression 2 True statements 
     } else { 
          #Boolean_Expression 2 result is FALSE then, these statements will be executed 
          Boolean_Expression 2 False statements 
} else  { 
     #If the Boolean_Expression 1 result is FALSE, these statements will be executed 
     Boolean_Expression 1 False statements 
} 
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Flow chart 
      

 
 
7.6 SWITCH STATEMENT: 

The working functionality of the switch case in R programming is almost same as R If 
Statement. As we said before, Switch statement may have n number of options so, switch 
case compares the expression value with the values assigned in the position. If both the 
expression value and case value match then statements present in that position will execute. 
Let us see the syntax of switch case for better understanding. 

switch(expression, 

       case1 = value1, 

       case2 = value2, 

       case3 = value3, 

       ... 
) 

Explanation: 
 expression: Evaluates to a value (typically a string or numeric index). 
 case1, case2, ...: Values associated with each case. If expression matches a case, the 

corresponding value is returned. 
 If expression is numeric, it selects the position (e.g., 1 selects the first value). 
 If expression is a character string, it selects the value associated with the matching 

name. 
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Flow chart 

                                        

Example 1: Using Character Matching 
x <- "apple" 
 
result <- switch(x, 
                 apple = "You chose Apple!", 
                 banana = "You chose Banana!", 
                 orange = "You chose Orange!", 
                 "Unknown choice" 
) 
 
print(result) 

Output: 

 [1] "You chose Apple!" 

Example 2: Using Numeric Index 
 
choice <- 2 
 
result <- switch(choice, 
                 "Option 1 selected", 
                 "Option 2 selected", 
                 "Option 3 selected" 
) 
 
print(result) 

Output: 

[1] "Option 2 selected" 
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7.7 SUMMARY: 
 

Conditional statements in R are essential for controlling the flow of execution based 
on certain conditions. They enable programs to make decisions and execute specific blocks of 
code depending on whether a condition is true or false. The if statement executes a block of 
code if a condition is true, while the if-else statement provides an alternative block if the 
condition is false. The if-else-if structure is used when multiple conditions need to be 
checked sequentially. Nested if statements allow for more complex decision-making by 
placing one condition inside another. Additionally, the switch() statement is a useful 
alternative for selecting from multiple options based on a value, offering a cleaner solution 
than lengthy if-else chains. Together, these statements improve the flexibility and efficiency 
of R programs, allowing them to handle various situations and data conditions dynamically. 

 
7.8  SELF ASSESSMENT QUESTIONS: 

 
1. What is the purpose of an if statement in R? Provide an example. 
2. Explain the difference between if and if-else statements with suitable examples. 
3. How does an if-else-if statement work in R? Write a program to check whether a 

number is positive, negative, or zero. 
4. Write an R program using nested if statements to check if a number is even and 

greater than 10. 
5. Describe the switch() statement in R. How is it different from if-else? Provide an 

example. 
6. Write a program in R to print the grade of a student based on the following marks: 

a) Marks >= 90: "A" 
b) Marks >= 75: "B" 
c) Marks >= 50: "C" 
d) Marks < 50: "Fail" 

7.9 SUGGESTED READINGS: 
 

1)  Dr. Mark Gardener (2012): Beginning R – The Statistical Programming Language, 
Wiley India Pvt Ltd. 

2)  W. N. Venables and D. M. Smith(2016): An Introduction to R 
3)  J.P. Lander(2014):R for Everyone, Pearson Publications 

4)  Garrett Grolemund : Hands-On Programming with R 

5)  Michael J. Crawley: The R Book 
                                                                                                
 
         Dr. SYED JILANI 
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LOOPING STATEMENTS 
 
OBJECTIVES:  
 
After studying this unit, you should be able to:  

  To understanding the concepts of looping statements 
  Will be able to write own R-scripts 
  To acquire knowledge about R programming  
  To understand the purpose and objectives Decision Making Statements 

 
STRUCTURE: 
 
8.1 Introduction 

8.2 For Loop 

8.3 While Loop 

8.4 Repeat Statement 

8.5 Break Statement 

8.6 Next Statement 

8.7 Functions 

8.7.1 Function Components 

      8.7.2 Function Arguments 

      8.7.3 Multi Arguments Function 

      8.7.4 Writing a Function in R 

8.8 User Defined Functions 

8.9 Conclusion 

8.10 Self Assessment Questions 

8.11 Further Readings 

 
8.1 INTRODUCTION: 
 

Looping statements are a core concept in programming that allows a programmer to 
execute a block of code multiple times based on certain conditions. They are essential for 
performing repetitive tasks without the need to write the same code over and over again. 
 
Why Are Loops Important 
Loops help in automating repetitive tasks, improving code efficiency, and making programs 
more concise and readable. Instead of manually repeating code, a loop can handle the 
repetition, reducing errors and making the code more maintainable. 
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8.2  FOR LOOP: 
 

A for loop in R is used to iterate over a sequence (such as a vector, list, or range of 
numbers). It repeats a set of instructions for each element in the sequence. The for loop is 
extremely useful when you need to perform repetitive tasks in your R programs. 
 
Why Use a For Loop in R  
 
For loops are ideal when the number of iterations is known or finite. They help automate 
repetitive tasks, making the code more concise, efficient, and easier to maintain. 
Basic Syntax of For Loop in R: 

The basic structure of a for loop in R is: 

for (variable in sequence) { 

  # Code to execute 

} 

 variable: The loop variable, which will take each value in the sequence. 
 sequence: A sequence of values (can be a vector, list, or range). 

How Does a For Loop  

1. The loop starts by initializing the variable to the first value in the sequence. 
2. It then executes the block of code inside the loop. 
3. After each iteration, the variable is updated to the next value in the sequence. 
4. The loop continues until all elements of the sequence have been processed. 

Example 1 

for (i in 1:5) { 

  print(i) 

} 

Explanation: 

 The 1:5 creates a sequence from 1 to 5. 
 The loop runs five times, and in each iteration, the value of i is printed. 

Output: 

[1] 1 
[1] 2 
[1] 3 
[1] 4 
[1] 5 
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Example 2 
fruits <- c("apple", "banana", "cherry") 
for (fruit in fruits) { 
  print(fruit) 
} 
The loop iterates over the fruits vector, printing each fruit in the list. 

[1] "apple" 

[1] "banana" 

[1] "cherry" 

The for loop is used to execute repetitive code statements for a particular number of 
times. The general syntax is provided below where i is the counter and as i assumes each 
sequential value defined (1 through 100 in this example) the code in the body will be 
performed for that ith value. 

# syntax of for loop 
for(iin1:100){ 
<dostuffherewithi> 
} 
Example: 

for(iin2010:2016){ 
output<-paste("The year is",i) 
print(output) 
} 
## [1] "The year is 2010" 
## [1] "The year is 2011" 
## [1] "The year is 2012" 
## [1] "The year is 2013" 
## [1] "The year is 2014" 
## [1] "The year is 2015" 
## [1] "The year is 2016" 
 

Flowchart  
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8.3 WHILE LOOP: 

While loops begin by testing a condition. If it is true, then they execute the statement. 
Once the statement is executed, the condition is tested again, and so forth, until the condition 
is false, after which the loop exits. It’s considered a best practice to include a counter object 
to keep track of total iterations 

# syntax of while loop 
counter<-1 
while(test_expression){ 
statement 
counter<-counter+1 
} 
Example: 

counter<-1 
x<-5 
set.seed(3) 
 
while(x>=3&&x<=8){ 
coin<-rbinom(1,1,0.5) 
if(coin==1){## random walk 
x<-x+1 
}else{ 
x<-x-1 
} 
cat("On iteration",counter,", x =",x,'\n') 
counter<-counter+1 
} 
Output: 
 
## On iteration 1 , x = 4  
## On iteration 2 , x = 5  
## On iteration 3 , x = 4  
## On iteration 4 , x = 3  
## On iteration 5 , x = 4  
## On iteration 6 , x = 5  
## On iteration 7 , x = 4  
## On iteration 8 , x = 3  
## On iteration 9 , x = 4  
## On iteration 10 , x = 5  
## On iteration 11 , x = 6  
## On iteration 12 , x = 7  
## On iteration 13 , x = 8  
## On iteration 14 , x = 9 
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FLOW CHART 

 

8.4 REPEAT LOOP: 

A repeat loop is used to iterate over a block of code multiple number of times. There is test 
expression in a repeat loop to end or exit the loop. Rather, we must put a condition statement 
explicitly inside the body of the loop and use the break function to exit the loop. Failing to do 
so will result into an infinite loop.The repeat statement is a control structure in R that allows 
you to execute a block of code repeatedly until a certain condition is met. 

# syntax of repeat loop 
counter<-1 
repeat{ 
statement 
if(test_expression){ 
break 
} 
counter<-counter+1 
} 
Example: 

counter<-1 
x<-NULL 
repeat{ 
x<-c(x,round(runif(1,min=1,max=25))) 
if(all(1:25%in%x)){ 
break 
} 
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counter<-counter+1 
} 
counter 
## [1] 75 

 
Flow chart 

 

8.5 BREAK ARGUMENTS: 

The break argument is used to exit a loop immediately, regardless of what iteration the loop 
may be on. break arguments are typically embedded in an if statement in which a condition is 
assessed, if TRUE break out of the loop, if FALSE continue on with the loop. In a nested 
looping situation, where there is a loop inside another loop, this statement exits from the 
innermost loop that is being evaluated. 

In this example, the for loop will iterate for each element in x; however, when it gets to the 
element that equals 3 it will break out and end the for loop process. 

x<-1:5 
 
for(iinx){ 
if(i==3){ 
break 
} 
print(i) 
} 
Output: 
## [1] 1 

## [1] 2 
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Example: 

x<-1:5 

for(iinx){ 
if(i==3){ 
next 
} 
print(i) 
} 
Output: 
[1] 1 
[1] 2 
[1] 4 
[1] 5 

 
FLOW CHART 

 
 
8.6 NEXT STATEMENT: 
 
                The next statement in R is used within loops to skip the current iteration and move 
directly to the next one. It is useful when certain conditions need to be met before continuing 
with the next iteration. 
Usage of next in Loops 
The next statement is typically used in for and while loops. When the condition for next is 
satisfied, the rest of the statements in that iteration are skipped, and the loop proceeds to the 
next iteration. 
Example 1 

for (i in 1:10) { 
  if (i %% 2 == 0) {  # Check if the number is even 
    next  # Skip even numbers 
  } 
  print(i)  # Print only odd numbers 
} 
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Explanation  
 The loop iterates through numbers 1 to 10. 
 If i is even (i %% 2 == 0), the next statement is executed, skipping the print(i) 

command. 
 As a result, only odd numbers are printed. 

 
Example 2 

x <- 0 
while (x < 10) { 
  x <- x + 1 
  if (x %% 2 == 0) { 
    next  # Skip even numbers 
  } 
  print(x) 

} 
Use Cases of next Statement 

1. Skipping specific values: Useful when certain values need to be ignored during 
iteration. 

2. Avoiding unnecessary computations: Helps improve efficiency by skipping 
unwanted operations. 

3. Handling special conditions: Useful for avoiding errors or unwanted processing. 
 
Flow chart 

 

8.7 FUNCTIONS: 

A function, in a programming environment, is a set of instructions. A programmer builds a 
function to avoid repeating the same task, or reduce complexity. 
 
A function should be 

 written to carry out a specified a tasks 
 may or may not include arguments 
 contain a body 
 May or may not return one or more values. 
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A general approach to a function is to use the argument part as inputs, feed the body part and 
finally return an output. The Syntax of a function is the following: 

Function (arglist) { 
#Function body 
} 
8.7.1 Function components 
The different parts of a function are − 

 Function Name − This is the actual name of the function. It is stored in R 
environment 

as an object with this name. 

 Arguments − An argument is a placeholder. When a function is invoked, you pass a 
value to the argument. Arguments are optional; that is, a function may contain no 
arguments. Also arguments can have default values. 

 Function Body − The function body contains a collection of statements that defines 
what the function does. 

 Return Value − The return value of a function is the last expression in the function 
body to be evaluated. 

8.7.2 Function Arguments: 

It’s useful to distinguish between the formal arguments and the actual arguments of a 
function. The formal arguments are a property of the function, whereas the actual or calling 
arguments can vary each time you call the function. This section discusses how calling 
arguments are mapped to formal arguments, how you can call a function given a list of 
arguments, how default arguments work, and the impact of lazy evaluation. 

Functions have named arguments which potentially have default values. 

1) The formal arguments are the arguments included in the function definition 
2) The formals function returns a list of all the formal arguments of a function 
3) Not every function call in R makes use of all the formal arguments Function 

arguments 
4) can be missing or might have default values 

R functions arguments can be matched positionally or by name. So the following calls 
to sd are all equivalent 
mydata <- rnorm(100) 
sd(mydata) 
> sd(x = mydata) 
> sd(x = mydata, na.rm = FALSE) 
> sd(na.rm = FALSE, x = mydata) 
> sd(na.rm = FALSE, mydata) 
Even though it’s legal, I don’t recommend messing around with the order of the 
arguments too much, since it can lead to some confusion. 
You can mix positional matching with matching by name. When an argument is 
matched by name, it is “taken out” of the argument list and the remaining unnamed 
arguments are matched in the order that they are listed in the function definition. 
> args(lm) 
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function (formula, data, subset, weights, na.action, method = "qr", model = TRUE, x 
= FALSE, y = FALSE, qr = TRUE, singular.ok = TRUE, contrasts = NULL, offset, 
...) 
The following two calls are equivalent. 
lm(data = mydata, y ~ x, model = FALSE, 1:100) 
lm(y ~ x, mydata, 1:100, model = FALSE) 
 

 Most of the time, named arguments are useful on the command line when you 
have a long argument list and you want to use the defaults for everything 
except for an argument near the end of the list 

 Named arguments also help if you can remember the name of the argument 
and not its position on the argument list (plotting is a good example). 
 
Function arguments can also be partially matched, which is useful for 
interactive work. The order of operations when given an argument is 
 Check for exact match for a named argument 
 Check for a partial match 
 Check for a positional match 

8.7.3 Multi arguments function 

We can write a function with more than one argument. Consider the function called "times". 
It is a straightforward function multiplying two variables. 

times <- function(x,y) { 
x*y 
} 
times(2,4) 

Output: 

## [1] 8. 

8.7.4 Writing a function in R 

In some occasion, we need to write our own function because we have to accomplish a 
particular task and no ready made function exists. A user-defined function involves 
a name, arguments and a body. 

function.name <- function(arguments) 
{ 
computations on the arguments 
some other code 
} 

Note: A good practice is to name a user-defined function different from a built-in function. It 
avoids confusion. 

R has many in-built functions which can be directly called in the program without defining 
them first. We can also create and use our own functions referred as user defined functions. 
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8.8 USER DEFINED FUNCTIONS:  

One of the great strengths of R is the user's ability to add functions. In fact, many of the 
functions in R are actually functions of functions. The structure of a function is given below. 

myfunction<-function(arg1,arg2,... ){  

statements  

return(object)  

}  

 
Objects in the function are local to the function. The object returned can be any data type.  
Here is an example. 
 

mysummary <- function(x,npar=TRUE,print=TRUE) {  

  if (!npar) {  

    center <- mean(x); spread <- sd(x)  

  } else {  

    center <- median(x); spread <- mad(x)  

  }  

  if (print & !npar) {  

    cat("Mean=", center, "\n", "SD=", spread, "\n")  

  } else if (print & npar) {  

    cat("Median=", center, "\n", "MAD=", spread, "\n")  

  }  

  result <- list(center=center,spread=spread)  

  return(result)  

}  
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8.9  SUMMARY: 

We explored various fundamental control flow structures and functions in R programming, 
which are essential for creating efficient and readable code. We covered loops such as the for 
loop and while loop, each of which serves a specific purpose in controlling the flow of 
execution based on conditions. The repeat statement was also discussed, offering another 
way to repeat actions, with the possibility of breaking the loop using the break statement or 
skipping iterations using the next statement. 

We also delved into functions, which are critical for encapsulating repetitive tasks and 
ensuring code reusability. By understanding the components of a function, including 
function arguments, we can write versatile functions that take multiple arguments. Learning 
how to define user-defined functions in R also allows us to create tailored solutions for 
specific tasks, providing a deeper understanding of how to structure programs effectively. 

8.10 SELF ASSESSMENT QUESTIONS: 
 
1. Write a for loop in R that prints all even numbers between 1 and 20. 

2. Explain the concept of function arguments and give an example of a function with 
multiple arguments in R. 

3. What are the key components of a function in R? Provide an example function that 
accepts two parameters and returns their sum. 

4. Write a while loop in R that continuously asks the user for input until they enter the 
word "stop". 

5. Create a user-defined function in R that takes a list of numbers and returns the mean 
and standard deviation of those numbers. 

6. Using a repeat loop, create a program that keeps asking the user to guess a number 
between 1 and 100, and ends when the correct number is guessed. 

 
8.11 SUGGESTED READINGS: 
 

1)  Dr. Mark Gardener (2012): Beginning R – The Statistical Programming Language, 
Wiley India Pvt Ltd. 

2)  W. N. Venables and D. M. Smith(2016): An Introduction to R 
3)  J.P. Lander(2014):R for Everyone, Pearson Publications 

4)  Garrett Grolemund : Hands-On Programming with R 

5)  Michael J. Crawley: The R Book 
                                                                                                     
 
       Dr. SYED JILANI 
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R- FUNCTIONS 
 
OBJECTIVES:  
 
After studying this unit, you should be able to:  

  Will be able to handle the data analysis using the R-statistical tools 
  The student will learn how to perform graphical presentation of the data 
  Understand the concepts of R-functions 
  Able to write Their own R-codes with and without using Built-in functions 

 
STRUCTURE: 
 
9.1 Built-in functions 

9.2 General functions 

      9.2.1 diff () function 

      9.2.2 length () function 

9.3 Statistical functions 

9.4 Scoping: 

         9.4.1 Scoping Rules: 

         9.4.2 Environment Scoping 

9.5 One argument function 

9.6. Calling functions 

9.7 R Codes for small standard statistical problems  

9.8 Apply functions 

        9.8.1 apply( ) 

        9.8.2 sapply( ) 

        9.8.3  lapply( ) 

9.8.4 tapply( ) 

9.9 Conclusion 

9.10 Self Assessment Questions 

9.11 Further Readings 

9.1  BUILT-IN FUNCTIONS: 

There is a lot of built-in function in R. R matches your input parameters with its function 
arguments; either by value or by position, then executes the function body. Function 
arguments can have default values: if you do not specify these arguments, R will take the 
default value. 
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Note: It is possible to see the source code of a function by running the name of the function 
itself in the console. 

                           

We will see three groups of function in action 

 General function 
 Maths function 
 Statistical function 

9.2  GENERAL FUNCTIONS: 

We are already familiar with general functions like cbind (), rbind(),range(),sort(),order() 
functions. Each of these functions has a specific task, takes arguments to return an output. 
Following are important functions one must know- 

9.2.1 diff() function: 

If you work on time series, you need to stationary the series by taking their lag values. 
A stationary process allows constant mean, variance and autocorrelation over time. This 
mainly improves the prediction of a time series. It can be easily done with the function diff(). 
We can build a random time-series data with a trend and then use the function diff() to 
stationary the series. The diff() function accepts one argument, a vector, and return suitable 
lagged and iterated difference. 

Note: We often need to create random data, but for learning and comparison we want the 
numbers to be identical across machines. To ensure we all generate the same data, we use the 
set.seed() function with arbitrary values of 123. The set.seed() function is generated through 
the process of pseudorandom number generator that make every modern computers to have 
the same sequence of numbers. If we don't use set.seed() function, we will all have different 
sequence of numbers. 

set.seed(123) 
## Create the data 
x = rnorm(1000) 
ts <- cumsum(x) 



 
 
 
Statistical Computing Using R 9.3  R-Functions 
 

 

## Stationary the serie 
diff_ts <- diff(ts) 
par(mfrow=c(1,2)) 
## Plot the series 
plot(ts, type='l') 
plot(diff(ts), type='l') 

 

9.2.2 length() function 

In many cases, we want to know the length of a vector for computation or to be used in a for 
loop. The length() function counts the number of rows in vector x. The following codes 
import the cars dataset and return the number of rows. 

Note: length() returns the number of elements in a vector. If the function is passed into a 
matrix or a data frame, the number of columns is returned. 

dt <- cars 
## number columns 
length(dt) 

Output: 

## [1] 1 
## number rows 
length(dt[,1]) 
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Output: 

[1] 50 

Math functions 

R has an array of mathematical functions. 

Operator Description 

abs(x) Takes the absolute value of x 

log(x,base=y) 
Takes the logarithm of x with base y; if base is 

not specified, returns the natural logarithm 

exp(x) Returns the exponential of x 

sqrt(x) Returns the square root of x 

factorial(x) Returns the factorial of x (x!) 

 
# sequence of number from 44 to 55 both including incremented by 1 
x_vector <- seq(45,55, by = 1) 
#logarithm 
log(x_vector) 

[1] 3.806662 3.828641 3.850148 3.871201 3.891820 3.912023 3.931826 3.951244 3.970292 
3.988984 4.007333 

#exponential 

exp(x_vector) 

Output: 

3.493427e+19 9.496119e+19 2.581313e+20 7.016736e+20 1.907347e+21 5.184706e+21 
1.409349e+22 3.831008e+22 1.041376e+23 2.830753e+23 7.694785e+23 
#squared root 

sqrt(x_vector) 

 Output: 

6.708204 6.782330 6.855655 6.928203 7.000000 7.071068 7.141428 7.211103 7.280110 
7.348469 7.416198 
 
#factorial 
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factorial(x_vector) 

Output: 

1.196222e+56 5.502622e+57 2.586232e+59 1.241392e+61 6.082819e+62 
3.041409e+64 1.551119e+66 8.065818e+67 4.274883e+69 2.308437e+71 
1.269640e+73 
 
9.3 STATISTICAL FUNCTIONS: 

R standard installation contains wide range of statistical functions. In this tutorial, we will 
briefly look at the most important function.. 

Basic statistic functions 

Operator Description 

mean(x) Mean of x 

median(x) Median of x 

var(x) Variance of x 

sd(x) Standard deviation of x 

scale(x) Standard scores (z-scores) of x 

quantile(x) The quartiles of x 

summary(x) Summary of x: mean, min, max etc.. 

speed <- dt$speed 
speed 
# Mean speed of cars dataset 
mean(speed) 

Output: 

## [1] 15.4 
# Median speed of cars dataset 
median(speed) 

Output: 

## [1] 15 
# Variance speed of cars dataset 
var(speed) 
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Output: 

## [1] 27.95918 
# Standard deviation speed of cars dataset 
sd(speed) 

Output: 

## [1] 5.287644 
# Standardize vector speed of cars dataset 
head(scale(speed), 5) 

Output: 

##           [,1] 
## [1,] -2.155969 
## [2,] -2.155969 
## [3,] -1.588609 
## [4,] -1.588609 
## [5,] -1.399489 
# Quantile speed of cars dataset 
quantile(speed) 

Output: 

##   0%  25%  50%  75% 100% 
##    4   12   15   19   25 
# Summary speed of cars dataset 
summary(speed) 

Output: 

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##     4.0    12.0    15.0    15.4    19.0    25.0 

Up to this point, we have learned a lot of R built-in functions. 

Note: Be careful with the class of the argument, i.e. numeric, Boolean or string. For instance, 
if we need to pass a string value, we need to enclose the string in quotation mark: "ABC" . 

9.4 SCOPING: 

Scoping is the set of rules that govern how R looks up the value of a symbol. In the example 
below, scoping is the set of rules that R applies to go from the symbol x to its value 10: 

x <- 10 

x 

## [1] 10 
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Understanding scoping allows you to: 

 build tools by composing functions, as described in functional programming. 

 overrule the usual evaluation rules and do non-standard evaluation, as described 
in non-standard evaluation. 

R has two types of scoping: lexical scoping, implemented automatically at the language 
level, and dynamic scoping, used in select functions to save typing during interactive 
analysis. We discuss lexical scoping here because it is intimately tied to function creation. 
Dynamic scoping is described in more detail in scoping issues. 

Lexical scoping looks up symbol values based on how functions were nested when they were 
created, not how they are nested when they are called. With lexical scoping, you don’t need 
to know how the function is called to figure out where the value of a variable will be looked 
up. You just need to look at the function’s definition. 

The “lexical” in lexical scoping doesn’t correspond to the usual English definition (“of or 
relating to words or the vocabulary of a language as distinguished from its grammar and 
construction”) but comes from the computer science term “lexing”, which is part of the 
process that converts code represented as text to meaningful pieces that the programming 
language understands. 

There are four basic principles behind R’s implementation of lexical scoping: 

 name masking 
 functions vs. variables 
 a fresh start 
 dynamic lookup 

9.4.1 Scoping Rules: 

The scoping rules for R are the main feature that make it different from the original S 
language. 

1) The scoping rules determine how a value is associated with a free variable in a function 
2) R uses lexical scoping or static scoping. A common alternative is dynamic scoping. 
3) Related to the scoping rules is how R uses the search list to bind a value to a symbol 
4) Lexical scoping turns out to be particularly useful for simplifying statistical computations 

Consider the following function. 

f <- function(x, y) { 

x^2 + y / z 

} 

This function has 2 formal arguments x and y. In the body of the function there is another 
symbol z. In this case z is called a free variable. 
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The scoping rules of a language determine how values are assigned to free variables. 
Free variables are not formal arguments and are not local variables (assigned insided 
the function body). 

9.4.2 Environment Scoping 

In R, the environment is a collection of objects like functions, variables, data frame, etc. 

R opens an environment each time Rstudio is prompted. 

The top-level environment available is the global environment, called R_GlobalEnv. And 
we have the local environment. 

We can list the content of the current environment. 

ls(environment()) 

Output 

## [1] "diff_ts"         "dt"              "speed"           "square_function" 
## [5] "ts"              "x"               "x_vector" 

You can see all the variables and function created in the R_Global Env. 

The above list will vary for you based on the historic code you execute in R Studio. 

Note that n, the argument of the square_function function is not in this global environment. 

A new environment is created for each function. In the above example, the function 
square_function() creates a new environment inside the global environment. 

To clarify the difference between global and local environment, let's study the following 
example 

These function takes a value x as an argument and add it to y define outside and inside the 
function 
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The function f returns the output 15. This is because y is defined in the global environment. 
Any variable defined in the global environment can be used locally. The variable y has the 
value of 10 during all function calls and is accessible at any time. 

Let's see what happens if the variable y is defined inside the function. 

We need to dropp `y` prior to run this code using rm r 

 

The output is also 15 when we call f(5) but returns an error when we try to print the value y. 
The variable y is not in the global environment. 

Finally, R uses the most recent variable definition to pass inside the body of a function. Let's 
consider the following example: 

 

R ignores the y values defined outside the function because we explicitly created a y variable 
inside the body of the function. 
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9.5 ONE ARGUMENT FUNCTION: 

In the next snippet, we define a simple square function. The function accepts a value and 
returns the square of the value. 

square_function<- function(n) 
{ 
# compute the square of integer `n` 
n^2 
} 
# calling the function and passing value 4 
square_function(4) 

Code Explanation: 

 The function is named square_function; it can be called whatever we want. 
 It receives an argument "n". We didn't specify the type of variable so that the user 

can pass an integer, a vector or a matrix 
 The function takes the input "n" and returns the square of the input. 

When you are done using the function, we can remove it with the rm() function. 

after you create the function 

rm(square_function) 
square_function 

On the console, we can see an error message :Error: object 'square_function' not found telling 
the function does not exist. 

Every operation is a function call 

“To understand computations in R, two slogans are helpful: 

 Everything that exists is an object. 
 Everything that happens is a function call." 

9.6. CALLING FUNCTIONS: 

When calling a function you can specify arguments by position, by complete name, or by 
partial name. Arguments are matched first by exact name (perfect matching), then by prefix 
matching, and finally by position. 

f <-function(abcdef, bcde1, bcde2) { 

list(a = abcdef, b1 = bcde1, b2 = bcde2) 

} 

str(f(1, 2, 3)) 

## List of 3 
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##  $ a : num 1 

##  $ b1: num 2 

##  $ b2: num 3 

str(f(2, 3, abcdef =1)) 

## List of 3 

##  $ a : num 1 

##  $ b1: num 2 

##  $ b2: num 3 

# Can abbreviate long argument names: 

str(f(2, 3, a =1)) 

## List of 3 

##  $ a : num 1 

##  $ b1: num 2 

##  $ b2: num 3 

# But this doesn't work because abbreviation is ambiguous 

str(f(1, 3, b =1)) 

## Error in f(1, 3, b = 1): argument 3 matches multiple formal arguments 

Generally, you only want to use positional matching for the first one or two arguments; they 
will be the most commonly used, and most readers will know what they are. Avoid using 
positional matching for less commonly used arguments, and only use readable abbreviations 
with partial matching. (If you are writing code for a package that you want to publish on 
CRAN you can not use partial matching, and must use complete names.) Named arguments 
should always come after unnamed arguments. If a function uses ... (discussed in more detail 
below), you can only specify arguments listed after ... with their full name. 

These are good calls: 

mean(1:10) 

mean(1:10, trim =0.05) 

This is probably overkill: 

mean(x =1:10) 

And these are just confusing: 

mean(1:10, n = T) 

mean(1:10, , FALSE) 

mean(1:10, 0.05) 
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mean(, TRUE, x =c(1:10, NA)) 

Calling a function given a list of arguments 

Suppose you had a list of function arguments: 

args <-list(1:10, na.rm =TRUE) 

How could you then send that list to mean()? You need do.call(): 

do.call(mean, args) 

## [1] 5.5 

# Equivalent to 

mean(1:10, na.rm =TRUE) 

## [1] 5.5 

Default and missing arguments 

Function arguments in R can have default values. 

f <-function(a =1, b =2) { 

c(a, b) 

} 

f() 

## [1] 1 2 

Since arguments in R are evaluated lazily (more on that below), the default value can be 
defined in terms of other arguments: 

g <-function(a =1, b = a *2) { 

c(a, b) 

} 

g() 

## [1] 1 2 

g(10) 

## [1] 10 20 

Default arguments can even be defined in terms of variables created within the function. This 
is used frequently in base R functions, but I think it is bad practice, because you can’t 
understand what the default values will be without reading the complete source code. 
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h <-function(a =1, b = d) { 

d <-(a +1) ^2 

c(a, b) 

} 

h() 

## [1] 1 4 

h(10) 

## [1]  10 121 

You can determine if an argument was supplied or not with the missing() function. 

i <-function(a, b) { 

c(missing(a), missing(b)) 

} 

i() 

## [1] TRUE TRUE 

i(a =1) 

## [1] FALSE  TRUE 

i(b =2) 

## [1]  TRUE FALSE 

i(1, 2) 

## [1] FALSE FALSE 

Sometimes you want to add a non-trivial default value, which might take several lines of code 
to compute. Instead of inserting that code in the function definition, you could 
use missing() to conditionally compute it if needed. However, this makes it hard to know 
which arguments are required and which are optional without carefully reading the 
documentation. Instead, I usually set the default value to NULL and use is.null() to check if 
the argument was supplied. 

9.7 R CODES FOR SMALL STANDARD STATISTICAL PROBLEMS : 

#R-code for finding arithmetic mean, standard deviation (SD), coefficient of variation 
(CV) 

cat ("\n enter sample values:"); 

S=scan(); 

n=length(S); 

mean=0;SD=0; 
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for(x in S) 

{ 

mean=mean+x;SD=SD+x*x; 

mean=mean/n; 

SD=SD/n-mean*mean; 

SD=sqrt(SD); 

CV=100*SD/mean; 

cat("mean of the given sample=",mean); 

cat("\n SD of the given sample=",SD); 

cat("\n CV of the given sample=",CV); 

} 

Output: 

enter sample values:1: 2 

2: 4 

3: 6 

4: 8 

5: 11 

6: 19 

7: 22 

8: 28 

9:  

Read 8 items 

mean of the given sample= 12.5 

 SD of the given sample= 8.803408 

 CV of the given sample= 70.42727 

#R-code for obtaining Range and Median 

cat("\n Enter sample:"); 

x=scan(); 

n=length(x); 
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for(i in 1:(n-1))for(j in (i+1):n)if(x[i]>x[j]){t=x[i];x[i]=x[j];x[j]=t;} 

print("sorted sample:");print(x); 

if(n%%2==0)median=(x[n/2]+x[n/2+1])/2 else median=x[(n+1)/2] 

cat("\n median of the given sample=",median); 

cat("\n Range of the given sample=",x[n]-x[1]); 

cat("\n\n"); 

Output: 

Enter sample: 1: 2 

2: 4 

3: 6 

4: 8 

5: 11 

6: 19 

7: 22 

8: 28 

Read 8 items 

[1] "sorted sample:" 

[1] 2 4 6 8 11 19 22 28 

 median of the given sample= 9.5 

 Range of the given sample= 26 

#R program for Correlation coefficient of given bivariate sample 

cat("\n Enter sample x:"); 

x=scan(); 

cat("\n Enter sample y:"); 

y=scan(); 

#x=rnorm(30); 

#y=rnorm(30); 

n=length(x); 

#demonstration of for loop 



 
 
 
Centre for Distance Education  9.16   Acharya Nagarjuna University 

mx=my=0; 

sxx=syy=sxy=0;#i=1; 

for(i in 1:n){mx=mx+x[i];my=my+y[i]; 

sxx=sxx+x[i]*x[i];syy=syy+y[i]*y[i]; 

sxy=sxy+x[i]*y[i];} 

mx=mx/n;my=my/n; 

vx=sxx/n-mx*mx; 

vy=syy/n-my*my;cov=sxy/n-mx*my; 

r=cov/sqrt(vx*vy); 

cat("\n Covariance of x&Y=",cov); 

cat("\n correlation of the given data=",r); 

cat("\n\n"); 

Output: 

Enter sample x: 1: 2 

2: 4 

3: 6 

4: 8 

Read 4 items 

 Enter sample y: 1: 3 

2: 5 

3: 7 

4: 9 

Read 4 items 

 Covariance of x &y = 5 

 correlation of the given data= 1 

#R- program for one sample t-test 

cat("\n Enter sample:");x=scan(); 

cat("\n population mean mu0=");mu0=scan(); 

n=length(x); 
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#demonstration of  for loop 

mean=s=0; 

for(x in X){mean=mean+x;s=s+x*x;} 

mean=mean/n;s=s-n*mean**2; 

s=sqrt(s/(n-1)); 

t=(mean-mu0)/s*sqrt(n); 

cat("\n mean=",mean); 

cat("\n s=",s);cat("\n mu0=",mu0); 

cat("\n t-critical value (at 5% LOS)=",qt(0.975,n-1));cat("DF=",n-1); 

cat("\n\n t value based on one sample=",t); 

if(abs(t)<qt(0.975,n-1))cat("\n\n The given has been drawn from the Normal population with 
mean=",mu0) else cat("The given sample has not been drawn from the Normal population 
with mean=",mu0) 

cat("\n\n"); 

Output: 

Enter sample: 1: 36  

2: 37 

3: 37 

4: 40 

5: 41 

6: 42 

7: 43 

8: 44 

9: 46 

10: 47 

11: 48 

12: 48 

13: 51 

14: 52 

15: 53 
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16: 59 

17: 55 

18: 55 

19: 56 

20: 60 

Read 20 items 

 population mean mu0=1: 47.5 

Read 1 item 

 mean= 3.9 

 s= 4.266146 

 mu0= 47.5 

 t- critical value (at 5% LOS)= 2.093024DF= 19 

 t value based on one sample= -45.70522 

The given sample has not been drawn from the Normal population with mean= 47.5 

9.8 APPLY FUNCTIONS: 

The apply family of functions in R(e.g.,apply, lapply, sapply, tapply etc.) allows for 
streamlined operations over various data structures. To perform group-wise manipulation 
using these functions, you often work with data frames or lists, grouping your data by a 
particular column or criteria. 

Common scenario for Group manipulations using apply family of functions given below: 

   9.8.1 apply( ) 

The apply function is extremely useful for manipulating grouped data within matrices or 
arrays. It works by applying a function to rows or columns of a matrix, or over dimensions 
of a multi-dimensional array. For instance, if you have a matrix of data where rows 
represent individuals and columns represent different variables, you can use apply to 
compute statistics (like mean or sum) for each row or column. This eliminates the need for 
cumbersome loops, streamlining your code. One limitation, however, is that apply is 
primarily suited for homogeneous data structures. When working with grouped data, you 
can reshape the data into an array and process groups using the desired dimension 
(MARGIN = 1 for rows, MARGIN = 2 for columns). For advanced group manipulation, 
combining apply with other tools like split can provide 

even more flexibility. 

Syntax: 

apply(X, MARGIN, FUN, ...) 



 
 
 
Statistical Computing Using R 9.19  R-Functions 
 

 

o X: The matrix or array. 

o MARGIN: 1 for rows, 2 for columns. 

o FUN: The function to apply. 

o ...: Additional arguments to the function. 
Example: 

data=matrix(1:12,4,byrow=T) 

data 

[,1] [,2] [,3] 

[1,] 1 2 3 

[2,] 4 5 6 

[3,] 7 8 9 

[4,] 10 11 12 

apply(data,1,sum) 

[1] 6 15 24 33 

apply(data,2,sum) 

[1] 22 26 30 

In this example by using the apply() function to perform the various statistical functions for 
different dimensions. Here we use sum() for the matrix shows the sum of each row elements 
for MARGIN=1 and each column elements for MARGIN=2. 

9.8.2 sapply( ) 

sapply is a simplified version of lapply that is ideal for grouped data when you want the 
output in a more compact form, such as a vector or matrix. This function applies a 
specified function over a vector or list of grouped data, trying to simplify the results 
automatically. For instance, in data analysis, if you have a list of numeric vectors (each 
representing a group), you can use sapply to calculate the mean, variance, or other 
summary statistics for each group. 

The function adapts well to grouped data because it handles vectors or lists easily, 
converting them into a unified output format. However, for more complex group structures, 
sapply might fail to simplify the output as expected. 

Syntax: 

lapply(X, FUN, ...) 

o X: A list or vector. 

o FUN: The function to apply. 
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Example: 

data() 

D=women 

D 

height weight 

1 58  115 

2 59  117 

3 60  120 

4 61  123 

5 62  126 

6 63  129 

7 64  132 

8 65  135 

9 66  139 

10 67  142 

11 68  146 

12 69  150 

13 70  154 

14 71  159 

15 72  164 

sapply(D,mean) height weight 65.0000 136.7333 
Generally, in R there are so many data sets are stored. We can use those data sets to perform 
the statistical computations by using sapply() function. 

In this example, the output will print like this i.e., average of the heights and weights for the 
given data. In this example the output will be in horizontal values. 

9.8.3  lapply( ) 

lapply is especially powerful for handling grouped data stored in lists. It applies a function 
to each element of a list (or vector) and always returns a list as output. This is particularly 
useful for working with grouped datasets where each group is represented as a separate list 
element. For example, you can use lapply to clean, transform, or analyze data within each 
group independently. Its flexibility allows it to handle groups of varying sizes and 
structures without assuming any simplification, making it ideal for more complex or nested 
data manipulation tasks. 
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Syntax: 

lapply(X, function,..., simplify = TRUE) 

o simplify = TRUE: Attempts to simplify output. 

Example: 

From the example of sapply function 

lapply(D,sd) 

$height 

[1] 4.472136 

$weight 

[1] 15.49869 

Here also we use those data sets to perform the computations by using lapply()function.  

9.8.4 tapply( ) 

tapply is uniquely designed for grouped data manipulation and is one of the most 
intuitive functions for this purpose. It splits a vector into groups based on a factor (or 
multiple factors) and applies a function to each group. This makes it invaluable for 
summarizing data by categories, such as computing group means, medians, or counts. 
Unlike apply, tapply handles vectors rather than matrices and allows for more direct 
grouping operations. It's commonly used in exploratory data analysis, where summarizing 
data by groups is a frequent task. One drawback is that it may produce outputs as arrays, 
which might require additional formatting for further analysis. 

Syntax: 

tapply(X, INDEX, function, ...) 

o X: The vector to split. 

o INDEX: A factor or list of factors. 

o function: The function to apply. 

Example:1 

x=matrix(sample(1:100,45),5,9) 

x 
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] 

[1,]   60   43   93   63    2   71    6   49    1 

[2,]   62   30   34   46   72   79   40   35    5 

[3,]   80   61   57   78   75   59   82   67   96 

[4,]    9   74   38   70   21   37   28   47   99 
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[5,]   11   55   84   18   88   91   32   20   90 

Example:2 

x <- c(1, 2, 3, 4, 5, 6) 

group <- c("A", "A", "B", "B", "C", "C") 

tapply(x, group, mean)  # apply mean function to each subset 

Output: 

  A   B   C  
 1.5 3.5 5.5 
 
9.9 SUMMARY: 

Mastering R's built-in functions, scoping rules, and the apply family of functions is essential 
for efficient data manipulation, statistical analysis, and writing reliable code. These concepts 
form the foundation for solving complex data analysis tasks and developing robust statistical 
models in R. 

9.10 SELF ASSESSMENT QUESTIONS: 
 
1. What are built-in functions in R? Give two examples. 
2. Explain the role of mathematical and string manipulation functions in R with 

examples. 
3. What is the purpose of the diff() function? Write a sample R code demonstrating its 

use. 
4. How does the length() function work in R? Provide an example. 
5. List any four statistical functions in R and explain their use. 
6. What is an environment in R? How does it affect variable searching in a function? 
7. Explain the concept of a one-argument function with an example. 
8. How are functions called in R? Write an example to call the sqrt() function. 
9. Write R code to find the median of a dataset. 
10. Differentiate between apply(), sapply(), lapply(), and tapply() functions in R. 
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LESSON-10 

PROBABILITY DISTRIBUTIONS IN R 
 
OBJECTIVES:  
 
After studying this unit, you should be able to:  

 Understand the importance of  Probability distribution in R 
 Students should have a solid understanding about the Generating samples 
 .To know the concepts of Bulit-in R- functions 
 To acquire knowledge about PDF and CDF for the ditributions 

STRUCTURE: 

10.1  Binomial distribution 

10.2  Poisson distribution 

10.3  Normal distribution 

10.4  Exponential distribution 

10.5  Weibull distribution 

10.6  Logistic distribution 

10.7  Conclusion 

10.8  Self Assessment Questions 

10.9  Further Readings 

 
10.1 BINOMIAL DISTRIBUTION: 

Introduction:  The Binomial Distribution is a discrete probability distribution representing 
the number of successes in a fixed number of independent Bernoulli trials, each having the 
same probability of success. 

A binomially distributed random variable  follows: 

 

where: 

  = number of trials 

  = probability of success in each trial 

Probability mass function (PMF): The Probability Mass Function (PMF) is given by: 
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where  is the binomial coefficient. 

Cumulative distribution function (CDF): The Cumulative Distribution Function (CDF) 

gives the probability that  takes a value less than or equal to a given value: 

 

Procedure in R: R provides built-in functions to work with the binomial distribution: 

Function Description 

dbinom(x, size, prob) Computes the probability mass function (PMF). 

pbinom(q, size, prob) Computes the cumulative probability (CDF). 

qbinom(p, size, prob) Computes the quantile function (inverse CDF). 

rbinom(n, size, prob) Generates random samples from a binomial distribution. 

Example in R: 

# Set parameters for the binomial distribution 
n <- 10   # Number of trials 
p <- 0.5  # Probability of success 
 
# 1. Compute PMF (Probability Mass Function) 
x_values <- 0:n  # Possible outcomes 
pmf_values <- dbinom(x_values, size=n, prob=p) 
print(pmf_values) 

# 2. Compute CDF (Cumulative Probability) 
cdf_values <- pbinom(x_values, size=n, prob=p) 
print(cdf_values) 

# 3. Compute Quantile Function 
quantile_value <- qbinom(0.5, size=n, prob=p)  # 50th percentile 
print(quantile_value) 

# 4. Generate Random Samples 
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random_samples <- rbinom(1000, size=n, prob=p)  # Generate 1000 samples 
print(head(random_samples)) 
 

 

# 5. Plot PMF (Probability Density Curve) 
barplot(pmf_values, names.arg=x_values, col="skyblue", main="Binomial PMF", xlab="x", 
ylab="P(X=x)") 

 
# 6. Plot CDF (Cumulative Density Curve) 

plot(x_values, cdf_values, type="s", col="red", lwd=2, main="Binomial CDF", xlab="x", 
ylab="P(X ≤ x)") 

 

Explanation: 

1. PMF Calculation: The dbinom() function calculates probabilities for each possible 
outcome in the binomial distribution. 

2. CDF Calculation: The pbinom() function calculates cumulative probabilities. 

3. Quantile Calculation: The qbinom() function determines the smallest  such that 

 is at least a given probability. 
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4. Random Sampling: The rbinom() function generates random numbers from the 
binomial distribution. 

5. PMF Plot: The barplot() function is used to visualize the probability distribution. 

6. CDF Plot: The plot() function is used to draw the cumulative distribution function as 
a step function. 

Conclusion: 

 The binomial distribution is useful for modeling the number of successes in a fixed 
number of trials. 

 R provides built-in functions to compute probabilities, cumulative probabilities, 
quantiles, and generate random samples. 

 Visualizing PMF and CDF helps in understanding the distribution. 
 

10.2  POISSON DISTRIBUTION: 

Introduction: The Poisson distribution is a discrete probability distribution that expresses the 
probability of a given number of events occurring in a fixed interval of time or space if these 
events occur with a known constant mean rate and independently of the time since the last 
event. 

Probability mass function (PMF): The probability of observing  events in an interval is 
given by: 

 

where: 

  (lambda) is the expected number of occurrences in the given interval (mean rate), 

  is Euler’s number (~2.71828). 

Estimating lambda value: The value of  (mean rate of occurrences) can be estimated from 
real-world data using: 

 

Example: Suppose a call center receives 50 calls in 10 hours. The estimated  is: 

 

Cumulative distribution function (CDF): The CDF gives the probability of obtaining at 

most  occurrences: 
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Quantile function: The quantile function finds the value of  for which the probability 

 is equal to a given probability . 

Generating random samples: Random numbers following a Poisson distribution can be 
generated to simulate real-world Poisson processes. 

Procedure in R: In R, the Poisson distribution is handled using built-in functions: 

Function Description 

dpois(x, lambda) Computes the PMF (probability mass function) at . 

ppois(x, lambda) Computes the CDF (cumulative probability) at . 

qpois(p, lambda) Computes the quantile function (inverse CDF). 

rpois(n, lambda) Generates  random samples from a Poisson distribution. 

Example implementation in R: 

# Set lambda (mean rate) 
lambda <- 4 
 
# Define the range of x values 
x_values <- 0:15 
 
# Compute PMF (Probability Mass Function) 
pmf_values <- dpois(x_values, lambda) 

pmf_values 

 
# Compute CDF (Cumulative Distribution Function) 
cdf_values <- ppois(x_values, lambda) 

 
# Generate 1000 random samples from Poisson distribution 
set.seed(123)  # For reproducibility 
random_samples <- rpois(1000, lambda) 
 
# Plot the PMF 
barplot(pmf_values, names.arg = x_values, col = "skyblue", 
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        main = "Poisson Distribution (PMF)", xlab = "x", ylab = "P(X = x)") 

 
# Plot the CDF 
plot(x_values, cdf_values, type = "s", col = "red", lwd = 2, 
     main = "Cumulative Distribution Function (CDF)", 
     xlab = "x", ylab = "P(X \u2264 x)") 

 
# Histogram of generated samples 
hist(random_samples, breaks = 20, col = "lightgreen", probability = TRUE, 
     main = "Histogram of Random Samples from Poisson Distribution", 
     xlab = "x", ylab = "Density") 
# Overlay PMF on the histogram 
lines(x_values, dpois(x_values, lambda), type = "p", col = "blue", pch = 16) 
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Explanation of the code: 

1. Define lambda: Set the Poisson parameter . 

2. Compute PMF: Use dpois() to get probability values for given . 
3. Compute CDF: Use ppois() to get cumulative probabilities. 
4. Generate random samples: Use rpois() to generate 1000 values. 
5. Plot PMF: A bar chart is created using barplot(). 
6. Plot CDF: A step plot is drawn using plot() with type = "s". 
7. Plot Histogram: A histogram of generated samples is overlaid with theoretical PMF. 

Conclusion: 

 The Poisson distribution is useful for modeling the count of occurrences over a fixed 
interval. 

 R provides built-in functions for computing probabilities, cumulative probabilities, 
quantiles, and generating random samples. 

 Visualizing PMF and CDF helps understand the distribution. 
 

10.3 NORMAL DISTRIBUTION: 

Introduction: The Normal Distribution is one of the most widely used probability 
distributions in statistics. It is a continuous probability distribution, defined by its mean (µ) 
and standard deviation (σ). The Normal Distribution is symmetric about its mean, meaning 
the left and right sides of the graph are mirror images of each other. It is described by the 
probability density function (PDF) as: 

 

Where:  
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  is the mean of the distribution, 

  is the standard deviation, 

  is the base of the natural logarithm. 

Built-in R functions for Normal Distribution: 

R provides several built-in functions to work with the Normal Distribution: 

1. dnorm(x, mean, sd): Computes the probability density function (PDF) of the 
Normal Distribution for the given x value. 

2. pnorm(q, mean, sd): Computes the cumulative distribution function (CDF) for the 
given quantile q. 

3. qnorm(p, mean, sd): Computes the quantile for the given cumulative probability p. 

4. rnorm(n, mean, sd): Generates n random samples from a Normal Distribution with 
specified mean and sd. 

Computing PDF, CDF, and Quantiles: 

To compute the PDF, CDF, and Quantiles, we use the following functions: 

 PDF: The dnorm() function calculates the value of the probability density for a given 
point x. Example: 

  # Compute PDF for x = 1, mean = 0, sd = 1 
dnorm(1, mean = 0, sd = 1) 

   

 CDF: The pnorm() function calculates the cumulative probability up to a given 
quantile q. Example: 

  # Compute CDF for q = 1, mean = 0, sd = 1 
pnorm(1, mean = 0, sd = 1) 

   

 Quantiles: The qnorm() function computes the quantile value for a given cumulative 
probability p. Example: 

  # Compute quantile for p = 0.95, mean = 0, sd = 1 
qnorm(0.95, mean = 0, sd = 1) 
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Generating samples: 

To generate random samples from a Normal Distribution, we use the rnorm() 
function. It takes the number of samples, the mean, and the standard deviation as input: 

# Generate 100 random samples from a Normal Distribution with mean = 0, sd = 1 
samples <- rnorm(100, mean = 0, sd = 1) 

Plotting Density and Cumulative Density Curves: 

R also provides functions to visually represent the Density Curve and the Cumulative 
Density Curve for the Normal Distribution: 

 Density Plot: The plot() function along with dnorm() can be used to plot the density 
of the Normal Distribution. 

  Example: 

  # Plot the Normal Density Curve for mean = 0, sd = 1 
x <- seq(-5, 5, by = 0.1) 
y <- dnorm(x, mean = 0, sd = 1) 
plot(x, y, type = "l", main = "Normal Distribution Density Curve", ylab = "Density", 
xlab = "x") 

   

 Cumulative Density Plot: To plot the cumulative density, use pnorm(): 

  Example: 

  # Plot the Cumulative Density Curve for mean = 0, sd = 1 
y_cdf <- pnorm(x, mean = 0, sd = 1) 
plot(x, y_cdf, type = "l", main = "Normal Distribution Cumulative Density Curve", 
ylab = "Cumulative Probability", xlab = "x") 
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10.4  EXPONENTIAL DISTRIBUTION: 

Introduction: 

The Exponential distribution is widely used to model the time between independent 
events that occur at a constant average rate. It is a continuous probability distribution with a 
single parameter, λ (lambda), which represents the rate of occurrence. 

Mathematically, the Probability Density Function (PDF) of an exponential distribution is 
given by: 

 

The Cumulative Distribution Function (CDF) is given by: 

 

The mean of an exponential distribution is 1/λ, and the variance is 1/λ². 

Exponential Distribution using R-software: 

R provides built-in functions to compute various properties of the exponential distribution: 

 dexp(x, rate = λ) → Computes the Probability Density Function (PDF). 
 pexp(x, rate = λ) → Computes the Cumulative Distribution Function (CDF). 
 qexp(p, rate = λ) → Computes the Quantile Function (inverse CDF). 
 rexp(n, rate = λ) → Generates random samples from an exponential distribution. 

Estimating the Rate Parameter (Λ) for an Exponential Distribution: 

The rate parameter (λ) in an Exponential Distribution represents the average rate 

at which events occur. It is the reciprocal of the mean ( ). 
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Methods to estimate λ: 

Using the sample mean 
o The Maximum Likelihood Estimator (MLE) for λ is: 

 

  where  is the sample mean. 
Using the method of moments 

o Since the expected value of an exponential distribution is , we 
estimate λ as: 

 

Estimating Λ in R with an example: 

Step 1: Generate Sample Data 

We generate a random sample from an Exponential Distribution with a known λ and 
then estimate it. 

# Set seed for reproducibility 
set.seed(123) 
 
# Generate 20 random samples from an exponential distribution with λ = 2 
true_lambda <- 2 
sample_data <- rexp(20, rate = true_lambda) 
 
# Display the sample data 
sample_data 

Step 2: Estimate λ Using the Sample Mean 
# Compute the sample mean 
sample_mean <- mean(sample_data) 
 
# Estimate lambda as 1/sample_mean 
estimated_lambda <- 1 / sample_mean 
 
# Display the estimated lambda 
estimated_lambda 

Step 3: Compare Estimated λ with True λ 
cat("True lambda:", true_lambda, "\nEstimated lambda:", estimated_lambda) 

Interpretation 

 The estimated λ should be close to the true value (2 in this example), but it may vary 
due to randomness. 

 As the sample size increases, the estimate becomes more accurate. 
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Conclusion: 

We estimated λ (rate parameter) using the MLE method by computing 
1/mean(sample data). This method is simple and effective for determining the rate of 
occurrence of events in an Exponential Distribution. 

Computing PDF, CDF, Quantile and Random Sampling in R: 

1. Computing Probability Density Function (PDF) 

The PDF gives the likelihood of observing a particular value in an exponential distribution. 

R Code: 
# Define rate parameter (λ) 
lambda <- 2 
 
# Compute PDF for a range of x values 
x_values <- seq(0, 2, by = 0.1) 
pdf_values <- dexp(x_values, rate = lambda) 

pdf_values 

 
# Display the computed PDF values 
data.frame(x_values, pdf_values) 
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2. Computing Cumulative Distribution Function (CDF) 

The CDF gives the probability that a random variable is less than or equal to a given value. 

R Code: 
# Compute CDF values for the same x_values 
cdf_values <- pexp(x_values, rate = lambda) 
 
# Display computed CDF values 
data.frame(x_values, cdf_values) 

 

3. Computing Quantiles 

The Quantile function gives the value corresponding to a given cumulative probability. 

R Code: 
# Compute quantiles for given probabilities 
probabilities <- c(0.1, 0.25, 0.5, 0.75, 0.9) 
quantiles <- qexp(probabilities, rate = lambda) 
 
# Display computed quantiles 
data.frame(probabilities, quantiles) 
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4. Generating Random Samples 

We can generate random samples from an Exponential distribution using rexp(). 

R Code: 
# Generate 10 random samples from exponential distribution 
set.seed(123)  # Set seed for reproducibility 
random_samples <- rexp(10, rate = lambda) 
 
# Display the generated random samples 
random_samples 

 

Plotting Density and Cumulative Density Curves: 

1. Plotting the PDF (Density Curve) 

To visualize the Probability Density Function, we can use the plot() function. 

R Code: 
# Plot the Exponential PDF 
plot(x_values, pdf_values, type = "l", col = "blue", lwd = 2,  
     main = "Exponential Distribution - PDF",  
     xlab = "x", ylab = "Density") 

 

2. Plotting The CDF (Cumulative Density Curve) 

To visualize the Cumulative Distribution Function, we plot the CDF values. 

R Code: 
# Plot the Exponential CDF 
plot(x_values, cdf_values, type = "l", col = "red", lwd = 2,  
     main = "Exponential Distribution - CDF",  
     xlab = "x", ylab = "Cumulative Probability") 
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Conclusion: 

This lesson covered the Exponential Distribution, its properties, and how to 
compute PDF, CDF, quantiles, and generate random samples in R. We also demonstrated 
how to plot density and cumulative density curves for better visualization. 

By understanding and applying these concepts, we can model and analyze time-to-
event data effectively using R. 
 

10.5  WEIBULL DISTRIBUTION: 

Introduction: The Weibull distribution is a continuous probability distribution used in 
reliability analysis, life data analysis, and survival analysis. It is characterized by two 
parameters: 

1. Shape parameter (k or shape) – Determines the shape of the distribution. 

2. Scale parameter (  or scale) – Stretches or compresses the distribution. 

The probability density function (PDF) of a Weibull distribution is given by: 

 

The cumulative distribution function (CDF) is: 

 

The quantile function is the inverse of the CDF. 

Setting Weibull Shape and Scale Parameters in R: 

Manually defining Weibull parameters: If the shape (k) and scale (λ) parameters are 
already known, they can be assigned directly in R: 

shape_param <- 2  # Shape parameter (k) 
scale_param <- 5  # Scale parameter (λ) 

Estimating Weibull parameters from data: If data is available, the Weibull parameters can 
be estimated using the fitdistrplus package. 
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Step 1: Install and load necessary libraries 

install.packages("fitdistrplus")  # Install package if not already installed 
library(fitdistrplus) 

Step 2: Generate sample data from a Weibull Distribution 

set.seed(123)  # For reproducibility 
data <- rweibull(100, shape = 2, scale = 5)  # Simulating data 

Step 3: Fit Weibull Distribution to the data 

fit <- fitdist(data, "weibull") 
summary(fit) 

 

Output: The summary(fit) command will display the estimated shape and scale parameters 
based on the provided data. 

Using SurvivalPackage: Another method to estimate Weibull parameters is by using the 
survival package: 

install.packages("survival") 
library(survival) 
 
weibull_model <- survreg(Surv(data) ~ 1, dist = "weibull") 
summary(weibull_model) 

 

The summary(weibull_model) function provides the estimated parameters based on survival 
analysis techniques. 
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Conclusion: 

This lesson demonstrated how to manually define and estimate Weibull distribution 
parameters in R using statistical tools. Understanding these concepts is essential for 
applications in reliability engineering and survival analysis. 

Procedure in R: 
R provides built-in functions to work with the Weibull distribution: 

Function Description 

dweibull(x, shape, scale) Computes the probability density function (PDF). 

pweibull(x, shape, scale) Computes the cumulative distribution function (CDF). 

qweibull(p, shape, scale) Computes the quantile function (inverse of CDF). 

rweibull(n, shape, scale) Generates random samples from a Weibull distribution. 

Brief example to get Location ( ) and Scale ( ) parameters 

To estimate the location and scale parameters from a given dataset, we can use the fitdistr 
function from the MASS package in R. 

# Load required package 
library(MASS) 
 
# Generate a sample dataset 
set.seed(123) 
data <- rlogis(100, location = 5, scale = 2) 
 
# Estimate parameters 
fit <- fitdistr(data, "logistic") 
print(fit) 

 

This will output estimates for the location ( ) and scale ( ) parameters based on the given 
dataset. 

Example in R: 

# Set Weibull distribution parameters 
shape_param <- 2  # Shape parameter (k) 
scale_param <- 3  # Scale parameter (lambda) 
 
# Define x values for plotting 
x_vals <- seq(0, 10, length.out = 100) 
 
# Compute PDF and CDF values 
pdf_vals <- dweibull(x_vals, shape = shape_param, scale = scale_param) 
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cdf_vals <- pweibull(x_vals, shape = shape_param, scale = scale_param) 
 
# Generate random samples 
set.seed(123)  # For reproducibility 
samples <- rweibull(1000, shape = shape_param, scale = scale_param) 
 
# Plot PDF (Density Curve) 
plot(x_vals, pdf_vals, type = "l", col = "blue", lwd = 2, 
     main = "Weibull Probability Density Function", 
     xlab = "x", ylab = "Density") 
grid() 

 

# Plot CDF (Cumulative Density Curve) 
plot(x_vals, cdf_vals, type = "l", col = "red", lwd = 2, 
     main = "Weibull Cumulative Distribution Function", 
     xlab = "x", ylab = "Cumulative Probability") 
grid() 

 
 
# Histogram of generated samples 
hist(samples, probability = TRUE, col = "lightblue", 
     main = "Histogram of Weibull Random Samples", 
     xlab = "x", ylab = "Density") 
lines(density(samples), col = "darkblue", lwd = 2)  # Overlay density curve 
grid() 
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Explanation of the code: 

1. Setting parameters: The Weibull shape and scale parameters are defined. 
2. Computing PDF & CDF: The dweibull() and pweibull() functions calculate density 

and cumulative probabilities. 
3. Generating random samples: The rweibull() function generates random samples. 
4. Plotting: 

o The PDF is plotted using plot(). 
o The CDF is plotted similarly. 
o A Histogram of random samples is plotted along with a density curve. 

This approach provides a comprehensive analysis of the Weibull distribution using R. 
 

10.6  LOGISTIC DISTRIBUTION: 

Theory: 

The logistic distribution is a continuous probability distribution used in logistic 
regression and survival analysis. It has: 

 Location parameter ( ): Determines center. 

 Scale parameter ( ): Controls spread. 

The PDF is: 

 

The CDF is: 

 

R functions: 
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 dlogis(x, location, scale) for PDF. 
 plogis(q, location, scale) for CDF. 
 qlogis(p, location, scale) for quantiles. 
 rlogis(n, location, scale) for random samples. 

Procedure: 

1. Computing PDF 

pdf_value <- dlogis(1, location = 0, scale = 1) 
print(pdf_value) 

 

2. Computing CDF 

cdf_value <- plogis(1, location = 0, scale = 1) 
print(cdf_value) 

 

3. Computing Quantiles 

quantile_value <- qlogis(0.95, location = 0, scale = 1) 
print(quantile_value) 

 

4. Generating random samples 

random_samples <- rlogis(10, location = 0, scale = 1) 
print(random_samples) 

 

5. Plotting PDF and CDF 

x_values <- seq(-5, 5, by = 0.1) 
plot(x_values, dlogis(x_values, location = 0, scale = 1), type = "l", col = "blue", lwd = 2,  
     xlab = "X", ylab = "Density", main = "PDF of Logistic Distribution") 

plot(x_values, plogis(x_values, location = 0, scale = 1), type = "l", col = "red", lwd = 2,  
     xlab = "X", ylab = "Cumulative Probability", main = "CDF of Logistic Distribution") 
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10.7  CONCLUSION: 
 
This probability distribution serves a unique purpose in statistical modeling and real-world 
applications. 
 
10.8 SELF ASSESSMENT QUESTIONS: 

1. In R, write a code to compute the probability of obtaining at most 4 heads in 8 coin 
tosses (p=0.5) 

2. Write an R script to compute the probability of 5 calls arriving in an hour when the 
average rate is 3 calls per hour. 

3. How do you standardize a normal variable? Demonstrate in R with mean=50, sd=10, 
and x=60. 

4. In R, simulate 100 random values from an exponential distribution with λ=0.5 and 
plot a histogram 

5. Write an R script to generate 500 random values from Weibull(1.5, 2) and plot the 
histogram. 

6. Write an R script to simulate 1000 values from a logistic distribution with μ=2, 
s=1.5 and plot the density curve. 

10.9 FURTHER READINGS: 
 

1) Dr. Mark Gardener (2012): Beginning R – The Statistical Programming Language,            

2) Wiley India Pvt Ltd. 
3) W. N. Venables and D. M. Smith(2016): An Introduction to R 

4) J.P. Lander(2014):R for Everyone, Pearson Publications 

5) Garrett Grolemund : Hands-On Programming with R 

6) Michael J. Crawley: The R Book 
 

Dr. D. Ramesh 

 



                                                             LESSON -11 

STATISTICAL TESTS IN R 
 
OBJECTIVES:  
 
After studying this unit, you should be able to:  

 Understand the importance of includes performing and interpreting the Shapiro-Wilk 
test for normality 

 Students should have a solid understanding about fundamental concepts and 
applications of various statistical tests in R 

 .To know the concepts of Chi-Square tests for association and goodness of fit 
 To acquire knowledge about practical skills will be developed to apply these tests 

effectively in real-world data analysis. 

STRUCTURE: 

11.1 Introduction 

11.2  Shapiro-Wilk test 

11.3  Kolmogorov-Smirnov test 

11.4  Wilcoxon Mann-Whitney test 

11.5  Chi-Square tests for association 

11.6  Chi-Square tests for goodness of fit 

11.7  Conclusion 

11.8  Self Assessment Questions 

11.9  Further Readings 

11.1 INTRODUCTION: 

Statistical tests are vital tools used in inferential statistics to make decisions or 
inferences about a population based on sample data. In this lesson, we will explore different 
statistical tests in R software, including the Shapiro-Wilk test, Kolmogorov-Smirnov test, 
Wilcoxon Mann-Whitney test, and Chi-Square tests. Each test will be explained with 
theory followed by a step-by-step analysis using R. 

11.2 SHAPIRO-WILK TEST FOR NORMALITY: 

The Shapiro-Wilk test is a test of normality that assesses whether a sample comes 
from a normally distributed population. It is widely used because of its power and accuracy. 
The null hypothesis for this test is that the data is normally distributed. 

Hypothesis 
 Null hypothesis (H₀): The data is normally distributed. 
 Alternative hypothesis (H₁): The data is not normally distributed. 

Steps in R 
1. Install necessary package: 
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  install.packages("stats") 

2. Perform the Shapiro-Wilk test: 

  data <- c(2.3, 3.1, 2.8, 3.5, 3.2)  # Sample data 
shapiro.test(data)  # Perform the test 

   

3. Interpret the output: The p-value will be outputted. If the p-value is less than 0.05, 
reject the null hypothesis, suggesting that the data is not normally distributed. 

11.3 KOLMOGOROV-SMIRNOV TEST: 
 

Theory: 

The Kolmogorov-Smirnov (KS) test compares a sample with a reference probability 
distribution (one-sample) or compares two samples to assess if they come from the same 
distribution (two-sample). 

Hypothesis 
 Null hypothesis (H₀): The data follows the reference distribution (or both samples 

come from the same distribution). 

 Alternative hypothesis (H₁): The data does not follow the reference distribution (or 
the samples come from different distributions). 

One-Sample KStest in R: 
1. Perform the one-sample KS test: 

  data <- c(1.2, 2.3, 2.8, 3.5, 3.7)  # Sample data 
ks.test(data, "pnorm", mean(data), sd(data))  # Compare to normal distribution 

   

2. Interpret the output: If the p-value is less than 0.05, the null hypothesis is rejected. 

Two-Sample KStest in R 
1. Perform the two-sample KS test: 
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  data1 <- c(1.2, 2.5, 3.1, 3.9, 4.2) 
data2 <- c(0.9, 1.8, 2.3, 2.8, 3.0) 
ks.test(data1, data2)  # Compare two samples 

   

2. Interpret the output: If the p-value is less than 0.05, the samples are drawn from 
different distributions. 

11.4  WILCOXON MANN-WHITNEY TEST (U-TEST): 

The Wilcoxon Mann-Whitney U-test is a non-parametric test used to compare 
differences between two independent samples. It is used when the data is ordinal or not 
normally distributed. 

Hypothesis 
 Null hypothesis (H₀): The distributions of both groups are the same. 

 Alternative hypothesis (H₁): The distributions of the groups are different. 

Steps in R 
1. Perform the Mann-Whitney U test: 

  group1 <- c(1.2, 2.3, 2.8) 
group2 <- c(3.1, 3.5, 4.0) 
wilcox.test(group1, group2)  # Perform the test 

   

2. Interpret the output: A p-value less than 0.05 suggests a significant difference 
between the two groups. 

11.5 CHI-SQUARE TEST FOR ASSOCIATION: 

The Chi-Square test for association tests if there is a significant association between 
two categorical variables. It compares observed frequencies to expected frequencies. 
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Hypothesis 
 Null hypothesis (H₀): There is no association between the variables. 
 Alternative hypothesis (H₁): There is an association between the variables. 

Steps in R 
1. Create the contingency table: 

  table <- matrix(c(10, 20, 30, 40), nrow = 2, byrow = TRUE) 
colnames(table) <- c("Category1", "Category2") 
rownames(table) <- c("Group1", "Group2") 

  table 

   

2. Perform the Chi-Square test: 

  chisq.test(table)  # Test for association 

   

3. Interpret the output: A p-value less than 0.05 indicates a significant association. 

11.6 CHI-SQUARE TEST FOR GOODNESS OF FIT: 

The Chi-Square test for goodness of fit is used to determine whether the observed 
distribution of a categorical variable matches an expected distribution. 

Hypothesis 
 Null hypothesis (H₀): The observed distribution fits the expected distribution. 
 Alternative hypothesis (H₁): The observed distribution does not fit the expected 

distribution. 

Steps in R 
1. Perform the Chi-Square goodness of fit test: 

  observed <- c(10, 20, 30) 
expected <- c(15, 25, 20) 
chisq.test(observed, p = expected/sum(expected))  # Perform the test 
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2. Interpret the output: A p-value less than 0.05 suggests a significant difference 
between the observed and expected frequencies. 

11.7 CONCLUSION: 
 
Shapiro-Wilk Test is best for checking normality in small datasets. 
Kolmogorov-Smirnov Test is useful for comparing distributions. 
Wilcoxon Mann-Whitney Test is a non-parametric alternative to the t-test. 
Chi-Square Test for Association determines relationships between categorical variables. 
Chi-Square Test for Goodness of Fit checks how well observed data matches 
expectations. 

 
11.8 SELF ASSESSMENT QUESTIONS: 
 

1. Explain the importance of the Shapiro-Wilk test. 
2. Write an R script to check if a dataset of 100 randomly generated values from a 

normal distribution follows normality. 
3. When should the Shapiro-Wilk test not be used? 
4. What is the difference between the Kolmogorov-Smirnov test and the Shapiro-Wilk 

test? 
5. Write an R program to compare two datasets using the KS test. 
6. Write an R script to compare two independent samples using the Wilcoxon Mann-

Whitney test. 
7. Write an R script to analyze whether gender and product preference are associated. 
8. Write an R script to test if a given dataset follows an expected distribution. 

 
11.9 FURTHER READINGS: 
 

1) Dr. Mark Gardener (2012): Beginning R – The Statistical Programming Language,            

2) Wiley India Pvt Ltd. 
3) W. N. Venables and D. M. Smith(2016): An Introduction to R 

4) J.P. Lander(2014):R for Everyone, Pearson Publications 

5) Garrett Grolemund : Hands-On Programming with R 

6) Michael J. Crawley: The R Book 
 

Dr. D. Ramesh 

 



LESSON -12 

R-CODES FOR FITTING DISTRIBUTIONS 
 

OBJECTIVES:  
 
After studying this unit, you should be able to:  

 Understand how to fit a binomial, poison, normal, exponential, Weibull and logistic 
distribution to frequency data 

 to assess whether the observed data fits the expected distribution 
 .To know the concepts of conduct a chi-square test to assess whether the observed 

data fits the expected distribution  
 To acquire knowledge about solving of non-linear equations using Newton-Raphson 

method in R was also covered. 

STRUCTURE: 

12.1  Fitting of Binomial distribution 

12.2  Fitting of Poisson distribution 

12.3  Fitting of Normal distribution 

12.4  Fitting of Exponential distribution 

12.5  Fitting of Weibull distribution 

12.6  Fitting of Logistic distribution 

12.7  Solving of non-linear equations 

12.8  Conclusion 

12.9  Self Assessment Questions 

12.10 Further Readings 

12.1 FITTING OF BINOMIAL DISTRIBUTION: 

In this lesson, an attempt was made for binomial distribution fitting and test for 
goodness of fit using a real-world example of tossing a coin. This process helps to understand 
whether the number of heads observed in a series of coin tosses follows the expected pattern 
based on the binomial distribution. Further, a chi-square test to also employed to evaluate the 
goodness of fit. 

Example question: 

Suppose a fair coin is tossed for10 times and record the number of heads observed. 
The following data shows the number of times heads appeared (successes) out of the 10 
tosses: 

Number of Heads (x) Frequency (f) 

0 5 

1 10 

2 15 
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Number of Heads (x) Frequency (f) 

3 20 

4 25 

5 15 

6 10 

7 5 

8 3 

9 2 

Fit a binomial distribution to this data and perform a chi-square test for goodness of fit. 

Steps in R Software: 

Null Hypothesis (H ): The data follows a binomial distribution with parameters  and 

. 

Input the frequency data into R: 

# Number of heads (x) 
x <- 0:10 
 
# Frequency of each number of heads (f) 
f <- c(5, 10, 15, 20, 25, 15, 10, 5, 3, 2, 0) 
 
# Total number of observations 
n_total <- sum(f) 

Calculate the theoretical probabilities using the Binomial Distribution: 

To compute the expected frequencies under the binomial distribution, the binomial 
probability mass function was used here. For each possible number of heads (0 to 10), 

possible probability was covered with using the parameters  and . 

# Calculate binomial probabilities for each number of heads 
probabilities <- dbinom(x, size = 10, prob = 0.5) 

 
# Calculate expected frequencies based on the probabilities 
expected_frequencies <- probabilities * n_total 
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 Chi-Square Goodness of Fit Test 

Now, chi-square goodness of fit test was been applied to compare the observed 
frequencies with the expected frequencies. The test statistic is calculated as: 

 

where  are the observed frequencies and  are the expected frequencies. 

# Calculate the chi-square statistic 
chi_square_stat <- sum((f - expected_frequencies)^2 / expected_frequencies) 
 
# Calculate the degrees of freedom (df = number of categories - 1 - parameters estimated) 
df <- length(x) - 1 - 1  # 1 parameter (p) is estimated 
 
# Calculate the p-value using the chi-square distribution 
p_value <- pchisq(chi_square_stat, df, lower.tail = FALSE) 
 
# Output the results 
chi_square_stat 
p_value 

 

Interpret the results: 

If the p-value of Chi-square Statistic is greater than 0.05, fail to reject the null 
hypothesis, suggesting that the data follows a binomial distribution. If the p-value is less than 
0.05, can reject the null hypothesis and conclude that the data does not follow a binomial 
distribution. 

Final thoughts: 

By using the coin tossing example, it was demonstrated how to apply the binomial 
distribution to frequency data and perform a chi-square goodness of fit test in R. This is a 
useful technique for determining if observed data follows a binomial distribution. 
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12.2  FITTING OF POISSON DISTRIBUTION BASED ON FREQUENCY DATA     
AND TEST FOR GOODNESS OF FIT: 

Introduction: 

In this lesson, Poisson distribution is applied for fitting and test for goodness of fit 
using a real-world example. The Poisson distribution is often used to model count-based data 
where events occur randomly over a fixed interval of time or space.  

Example question: 

The following data shows the number of arrivals and their corresponding frequencies: 

Number of Customers (x) Frequency (f) 

0 3 

1 9 

2 18 

3 25 

4 20 

5 10 

6 8 

7 4 

8 2 

9 1 

Fit a Poisson distribution to this data and perform a chi-square test for goodness of fit. 

Steps in R Software: 

Define the problem and the hypothesis: 

Here fitting of a Poisson distribution was done with parameter  (the average number 

of arrivals per hour). Null Hypothesis (H ): The data follows a Poisson distribution with 

parameter . 

Alternative Hypothesis (H ): The data does not follow a Poisson distribution. 

Input the frequency data into R: 

# Number of customers (x) 
x <- 0:9 
 
# Frequency of each number of customers (f) 
f <- c(3, 9, 18, 25, 20, 10, 8, 4, 2, 1) 
 
# Total number of observations 
n_total <- sum(f) 
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# Estimate lambda (mean of the observed data) 
lambda <- sum(x * f) / n_total 

 

Calculate the theoretical probabilities using the Poisson Distribution: 

To compute the expected frequencies under the Poisson distribution, Poisson 
probability mass function was utilized. For each possible number of customers (0 to 9), the 

probability had been calculated using the estimated parameter . 

# Calculate Poisson probabilities for each number of customers 
probabilities <- dpois(x, lambda) 
 
# Calculate expected frequencies based on the probabilities 
expected_frequencies <- probabilities * n_total 

Chi-square goodness of fit test: 

Now, chi-square goodness of fit test was used to compare the observed frequencies 
with the expected frequencies. The test statistic is calculated as: 

 

where  are the observed frequencies and  are the expected frequencies. 

# Calculate the chi-square statistic 
chi_square_stat <- sum((f - expected_frequencies)^2 / expected_frequencies) 
 
# Calculate the degrees of freedom (df = number of categories - 1 - parameters estimated) 
df <- length(x) - 1 - 1  # 1 parameter (lambda) is estimated 
 
# Calculate the p-value using the chi-square distribution 
p_value <- pchisq(chi_square_stat, df, lower.tail = FALSE) 
 
# Output the results 
chi_square_stat 
p_value 

 

Interpret the results: 

If the p-value of Chi-square Statistic is greater than 0.05, fail to reject the null 
hypothesis, suggesting that the data follows a poisson distribution. If the p-value is less than 
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0.05, can reject the null hypothesis and conclude that the data does not follow a poisson 
distribution. 

12.3 FITTING OF NORMAL DISTRIBUTION BASED ON FREQUENCY DATA   
AND TEST FOR GOODNESS OF FIT: 

Introduction: 

In this, Normal distribution was fitted and tested for goodness of fit using a real-world 
example. The Normal distribution is commonly used to model continuous data that tends to 
cluster around a central value.  

Example question: 

Suppose the heights of a group of students and record their frequencies in different 
height ranges were measured and the following data represents the number of students within 
each height interval: 

Height Range (cm) Frequency (f) 

140-150 5 

150-160 12 

160-170 18 

170-180 22 

180-190 16 

190-200 7 

Fit a Normal distribution to this data and perform a chi-square test for goodness of fit. 

Steps in R software: 

Define the problem and the hypothesis: 

Here, an attempt was made to fit a Normal distribution with parameters  (mean) and 

 (standard deviation).  

Null Hypothesis (H ): The data follows a Normal distribution with parameters  and . 

Alternative Hypothesis (H ): The data does not follow a Normal distribution. 

Input the frequency data into R: 

# Midpoints of height ranges 
x <- c(145, 155, 165, 175, 185, 195) 
 
# Frequency of each height range 
f <- c(5, 12, 18, 22, 16, 7) 
 
# Total number of observations 
n_total <- sum(f) 
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# Estimate mean and standard deviation 
mu <- sum(x * f) / n_total 
sigma <- sqrt(sum(f * (x - mu)^2) / n_total) 

 

Calculate the theoretical probabilities using the Normal Distribution: 

To compute the expected frequencies under the Normal distribution, the cumulative 
distribution function (CDF) was used to determine the probability of data falling within each 
interval. 

# Calculate probabilities for each interval using normal CDF 
probabilities <- pnorm(c(150, 160, 170, 180, 190, 200), mean = mu, sd =   sigma)-
pnorm(c(140, 150, 160, 170, 180, 190), mean = mu, sd = sigma) 
 
# Calculate expected frequencies based on the probabilities 
expected_frequencies <- probabilities * n_total 

Chi-square goodness of fit test: 

Now, the chi-square goodness of fit test was used to compare the observed 
frequencies with the expected frequencies. The test statistic is calculated as: 

 

where  are the observed frequencies and  are the expected frequencies. 

# Calculate the chi-square statistic 
chi_square_stat <- sum((f - expected_frequencies)^2 / expected_frequencies) 
 
# Calculate the degrees of freedom (df = number of categories - 1 - parameters estimated) 
df <- length(x) - 1 - 2  # 2 parameters (mu, sigma) are estimated 
 
# Calculate the p-value using the chi-square distribution 
p_value <- pchisq(chi_square_stat, df, lower.tail = FALSE) 
 
# Output the results 
chi_square_stat 
p_value 

 



Center for Distance Education  12.8   Acharya Nagarjuna University 
 

Conclusion: 

If the p-value of Chi-square Statistic is greater than 0.05, we fail to reject the null 
hypothesis, suggesting that the data follows a Normal distribution. If the p-value is less than 
0.05, can reject the null hypothesis and conclude that the data does not follow a Normal 
distribution. 

12.4  FITTING OF EXPONENTIAL DISTRIBUTION BASED ON FREQUENCY 
DATA AND TEST FOR GOODNESS OF FIT: 

Introduction: 

In this lesson, the Exponential distribution will be fitting along test for goodness of fit 
using a real-world example. The Exponential distribution is commonly used to model the 
time between events in a Poisson process, such as the waiting time between arrivals.  

Example question: 

Suppose we measure the time (in minutes) between customer arrivals at a service 
center and record their frequencies within different time intervals. The following data 
represents the number of customers arriving within each interval: 

Time Interval (minutes) Frequency (f) 

0-2 10 

2-4 18 

4-6 22 

6-8 16 

8-10 9 

10-12 5 

Fit an Exponential distribution to this data and perform a chi-square test for goodness of fit. 

Steps in R Software: 

Null Hypothesis (H ): The data follows an Exponential distribution with parameter . 

Alternative Hypothesis (H ): The data does not follow an Exponential distribution. 

Input the frequency data into R: 

# Midpoints of time intervals 
x <- c(1, 3, 5, 7, 9, 11) 
 
# Frequency of each interval 
f <- c(10, 18, 22, 16, 9, 5) 
 
# Total number of observations 
n_total <- sum(f) 
 
# Estimate lambda (1 / mean of observed data) 
lambda <- 1 / (sum(x * f) / n_total) 
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Calculate the theoretical probabilities using the Exponential Distribution: 

To compute the expected frequencies under the Exponential distribution, the 
cumulative distribution function (CDF) was used to determine the probability of data falling 
within each interval. 

# Calculate probabilities for each interval using exponential CDF 
probabilities <- pexp(c(2, 4, 6, 8, 10, 12), rate = lambda) - 
                 pexp(c(0, 2, 4, 6, 8, 10), rate = lambda) 
 
# Calculate expected frequencies based on the probabilities 
expected_frequencies <- probabilities * n_total 

Chi-square goodness of fit test: 

Now, the chi-square goodness of fit test was used to compare the observed 
frequencies with the expected frequencies. The test statistic is calculated as: 

 

where  are the observed frequencies and  are the expected frequencies. 

# Calculate the chi-square statistic 
chi_square_stat <- sum((f - expected_frequencies)^2 / expected_frequencies) 
 
# Calculate the degrees of freedom (df = number of categories - 1 - parameters estimated) 
df <- length(x) - 1 - 1  # 1 parameter (lambda) is estimated 
 
# Calculate the p-value using the chi-square distribution 
p_value <- pchisq(chi_square_stat, df, lower.tail = FALSE) 
 
# Output the results 
chi_square_stat 
p_value 

 

Interpret the results: 

If the p-value of Chi-square Statistic is greater than 0.05, fail to reject the null 
hypothesis, suggesting that the data follows a exponential distribution. If the p-value is less 
than 0.05, can reject the null hypothesis and conclude that the data does not follow a 
exponential distribution. 
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12.5  FITTING OF WEIBULL DISTRIBUTION BASED ON FREQUENCY DATA 
AND TEST FOR GOODNESS OF FIT: 

Introduction: 

The Weibull distribution is commonly used in reliability analysis and life data 
modeling, making it a useful tool for analyzing failure times and survival data.  

Example question:  

Suppose there a measure related the lifetimes (in hours) of a mechanical component 
having frequencies within different time intervals. The following data represents the number 
of components failing within each time interval: 

Lifetime Interval (hours) Frequency (f) 

0-50 8 

50-100 14 

100-150 20 

150-200 25 

200-250 18 

250-300 10 

Fit a Weibull distribution to this data and perform a chi-square test for goodness of fit. 

Steps in R software: 

1. Define the problem and the hypothesis: 

Fit a Weibull distribution with parameters  (shape) and  (scale).  

Null Hypothesis (H ): The data follows a Weibull distribution with parameters  and . 

Alternative Hypothesis (H ): The data does not follow a Weibull distribution. 

2. Input the frequency data into R: 

# Midpoints of lifetime intervals 
x <- c(25, 75, 125, 175, 225, 275) 
 
# Frequency of each interval 
f <- c(8, 14, 20, 25, 18, 10) 
 
# Total number of observations 
n_total <- sum(f) 

3. Estimate the Weibull parameters: 

fitdistrplus package was used here to estimate the Weibull distribution parameters. 

# Load required package 
library(MASS) 
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library(fitdistrplus) 
 
# Fit Weibull distribution 
weibull_fit <- fitdist(rep(x, f), "weibull") 
alpha <- weibull_fit$estimate["shape"] 
beta <- weibull_fit$estimate["scale"] 

4. Calculate the theoretical probabilities using the Weibull distribution: 

To compute the expected frequencies under the Weibull distribution, the cumulative 
distribution function (CDF) was used to determine the probability of data falling within each 
interval. 

# Calculate probabilities for each interval using Weibull CDF 
probabilities <- pweibull(c(50, 100, 150, 200, 250, 300), shape = alpha, scale = beta) - 
                 pweibull(c(0, 50, 100, 150, 200, 250), shape = alpha, scale = beta) 
 
# Calculate expected frequencies based on the probabilities 
expected_frequencies <- probabilities * n_total 

5. Chi-square goodness of fit test: 

Now, the chi-square goodness of fit test was employed to compare the observed 
frequencies with the expected frequencies. The test statistic is calculated as: 

 

where  are the observed frequencies and  are the expected frequencies. 

# Calculate the chi-square statistic 
chi_square_stat <- sum((f - expected_frequencies)^2 / expected_frequencies) 
 
# Calculate the degrees of freedom (df = number of categories - 1 - parameters estimated) 
df <- length(x) - 1 - 2  # 2 parameters (alpha, beta) are estimated 
 
# Calculate the p-value using the chi-square distribution 
p_value <- pchisq(chi_square_stat, df, lower.tail = FALSE) 
 
# Output the results 
chi_square_stat 
p_value 

 

6. Interpret the results: 

If the p-value of Chi-square Statistic is greater than 0.05, fail to reject the null 
hypothesis, suggesting that the data follows weibull distribution. If the p-value is less than 
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0.05, can reject the null hypothesis and conclude that the data does not follow weibull 
distribution. 

12.6  FITTING OF LOGISTIC DISTRIBUTION BASED ON FREQUENCY DATA 
AND TEST FOR GOODNESS OF FIT: 

Introduction: 

In this lesson, we will apply the Logistic distribution fitting and test for goodness of 
fit using a real-world example. The Logistic distribution is often used in modeling growth 
processes and extreme value distributions. We will also perform a chi-square test to evaluate 
the goodness of fit. 

Example question: 

Suppose we measure the weight gain (in kg) of a group of individuals over a period 
and record their frequencies within different weight gain intervals. The following data 
represents the number of individuals gaining weight within each interval: 

Weight Gain Interval (kg) Frequency (f) 

0-5 10 

5-10 18 

10-15 22 

15-20 20 

20-25 15 

25-30 8 

Fit a Logistic distribution to this data and perform a chi-square test for goodness of fit. 

Steps in R software: 

Define the problem and the hypothesis: 

We are fitting a Logistic distribution with parameters  (location) and  (scale). We 
will test if the data fits a Logistic distribution using a chi-square test. 

Null Hypothesis (H ): The data follows a Logistic distribution with parameters  and . 

Alternative Hypothesis (H ): The data does not follow a Logistic distribution. 

Input the frequency data into R: 

# Midpoints of weight gain intervals 
x <- c(2.5, 7.5, 12.5, 17.5, 22.5, 27.5) 
 
# Frequency of each interval 
f <- c(10, 18, 22, 20, 15, 8) 
 
# Total number of observations 
n_total <- sum(f) 
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Estimate the Logistic parameters: 

We use the fitdistrplus package to estimate the Logistic distribution parameters. 

# Load required package 
library(MASS) 
library(fitdistrplus) 
 
# Fit Logistic distribution 
logistic_fit <- fitdist(rep(x, f), "logis") 
mu <- logistic_fit$estimate["location"] 
sigma <- logistic_fit$estimate["scale"] 

Calculate the theoretical probabilities using the Logistic Distribution: 

To compute the expected frequencies under the Logistic distribution, we use the 
cumulative distribution function (CDF) to determine the probability of data falling within 
each interval. 

# Calculate probabilities for each interval using Logistic CDF 
probabilities <- plogis(c(5, 10, 15, 20, 25, 30), location = mu, scale = sigma) -plogis(c(0, 5, 
10, 15, 20, 25), location = mu, scale = sigma) 
 
# Calculate expected frequencies based on the probabilities 
expected_frequencies <- probabilities * n_total 

Chi-square goodness of fit test:  

Now, we perform the chi-square goodness of fit test to compare the observed 
frequencies with the expected frequencies. The test statistic is calculated as: 

 

where  are the observed frequencies and  are the expected frequencies. 

# Calculate the chi-square statistic 
chi_square_stat <- sum((f - expected_frequencies)^2 / expected_frequencies) 
 
# Calculate the degrees of freedom (df = number of categories - 1 - parameters estimated) 
df <- length(x) - 1 - 2  # 2 parameters (mu, sigma) are estimated 
 
# Calculate the p-value using the chi-square distribution 
p_value <- pchisq(chi_square_stat, df, lower.tail = FALSE) 
 
# Output the results 
chi_square_stat 
p_value 
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Interpret the results: 

If the p-value is greater than 0.05, fail to reject the null hypothesis, suggesting that the 
data follows a Logistic distribution. If the p-value is less than 0.05, reject the null hypothesis 
and conclude that the data does not follow a Logistic distribution. 

12.7  SOLVING NON-LINEAR EQUATIONS USING NEWTON-RAPHSON  
METHOD IN R: 

Introduction: 

The Newton-Raphson method is an iterative technique used for finding the roots of a 

nonlinear equation . The general form of the Newton-Raphson formula is: 

 

Where: 

  is the current estimate. 

  is the function value at . 

  is the derivative of  at . 

Problem statement: 

We will solve the equation: 

 

using the Newton-Raphson method. 

Step 1: Define the function and its derivative 

In R, we define the function  and its derivative : 

# Define the function f(x) 
f <- function(x) { 
  return (x^3 - 4*x - 9) 
} 
 
# Define the derivative f'(x) 
f_prime <- function(x) { 
  return (3*x^2 - 4) 
} 

Step 2: Implement the Newton-Raphson Method 

We create a function in R to implement the Newton-Raphson method: 

newton_raphson <- function(x0, tol = 1e-6, max_iter = 100) { 
  x <- x0  # Initial guess 
  iter <- 0 
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  while (abs(f(x)) > tol && iter < max_iter) { 
    x_new <- x - f(x) / f_prime(x)  # Newton-Raphson formula 
    iter <- iter + 1 
    cat("Iteration:", iter, "x =", x_new, "\n")  # Print each iteration 
 
    # Check for convergence 
    if (abs(x_new - x) < tol) { 
      break 
    } 
 
    x <- x_new  # Update x 
  } 
 
  return(x) 
} 

Step 3: Choose an initial guess 

Newton-Raphson requires an initial guess . We assume: 

 

Run the function: 

root <- newton_raphson(2)  # Initial guess x0 = 2 
cat("Approximate Root:", root, "\n") 

Step 4: Step-by-step execution with explanation 

Let’s break down the calculations for each iteration. 

Iteration 1: 

  

  

  

 Compute new : 

 

Iteration 2: 

  

  

  

 Compute new : 
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Iteration 3: 

  

  

  

 Compute new : 

 

Iteration 4: 

  

  (very close to zero, so we stop) 

Final approximate root 

The method stops when  tolerance (e.g., ). The approximate root found is: 

 

Expected output in R 

Iteration: 1 x = 3.125  
Iteration: 2 x = 2.769  
Iteration: 3 x = 2.709  
Iteration: 4 x = 2.4803  
Approximate Root: 2.4803 

This means the equation  has a root near 2.4803. 

12.8 CONCLUSION: 
 

 The Newton-Raphson method iteratively refines the root estimate. 
 Convergence depends on the choice of the initial guess. 

 The method works well when  near the root. 
 The final root approximation is obtained within the specified tolerance. 

 
12.9 SELF ASSESSMENT QUESTIONS: 
 

1. Write an R script to compute and plot the Probability Mass Function (PMF) and 
Cumulative Distribution Function (CDF) for a Poisson distribution with a given rate 
parameter (λ)=4and consider x values from 0 to 15. 

2. Write an R script to compute and plot the Probability Density Function (PDF), 
Cumulative Distribution Function (CDF), quantile and 20 random generating samples 
inExponential Distributionwith a given rate parameter (λ) = 2. 

3. Write the R code for the  
a) Shapiro-Wilk test  

b) Kolmogorov-Smirnov test for two-sample case 
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c) Wilcoxon Mann-Whitney U- test  

d) Chi-square tests for association and goodness of fit. 

4. Write the R code for fitting of Weibull Distribution based on frequency data and test 
for goodness of fit. For example, there a measure related the lifetimes (in hours) of a 
mechanical component having frequencies within different time intervals. The 
following data represents the number of components failing within each time interval: 
 

Lifetime Interval (hours) Frequency (f) 

0-50 8 

50-100 14 

100-150 20 

150-200 25 

200-250 18 

250-300 10 
 

5. Write the R code for fitting of Logistic Distribution based on frequency data and test 
for goodness of fit. For example, the weight gain (in kg) of a group of individuals 
over a period and record their frequencies within different weight gain intervals. The 
following data represents the number of individuals gaining weight within each 
interval: 
 

Weight Gain Interval (kg) Frequency (f) 

0-5 10 

5-10 18 

10-15 22 

15-20 20 

20-25 15 

25-30 8 
 

6. Solve a non-linear equation using Newton-Raphson method 
in R. 

12.10 FURTHER READINGS: 
 

1) Dr. Mark Gardener (2012): Beginning R – The Statistical Programming Language,            

2) Wiley India Pvt Ltd. 
3) W. N. Venables and D. M. Smith(2016): An Introduction to R 

4) J.P. Lander(2014):R for Everyone, Pearson Publications 

5) Garrett Grolemund : Hands-On Programming with R 

6) Michael J. Crawley: The R Book 
 

Dr. D. Ramesh 



 LESSON -13 
R-GRAPHICS 

 
OBJECTIVES: 
 
 

 To understand the concept and importance of data visualization in R. 

 To explore and apply different graphical techniques like histograms, scatter plots, and 
box plots. 

 To learn customization techniques (colors, labels, titles) to enhance R graphics. 

 To compare various plotting methods and determine their suitability for different 
types of data. 

 
STRUCTURE: 
 

13.1 Introduction 

13.2 High-Level Plotting Functions 

13.3 Scatter Plots 

13.4 Box-Whisker Plots 

13.5 Bar Plots 

13.6 Dot Plots 

13.7 Line Charts In R: Numeric and Categorical Data 

13.8 Line Chart with Numeric Data 

13.9 Line Chart with Categorical Data 

13.10 Combined Line Chart 

13.11 Charts In R: Pie Charts, Bar Charts, Q-Q Plots, and Curves 

13.12 Pie Charts 

13.13 Bar Charts 

13.14 Q-Q Plots 

13.15 Curves 

13.16 Summary 

13.17 Self-Assessment Questions 

13.18 Suggested Readings 

 

13.1 INTRODUCTION: 
 

This unit introduces R's powerful graphics capabilities, covering both high-level and 
low-level plotting functions, customization options, and statistical applications. The goal is to 
effectively visualize data for analysis and interpretation. 
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13.2  HIGH-LEVEL PLOTTING FUNCTIONS: 

High-level plotting functions are designed to quickly create complete visualizations of 
data. These functions allow for a variety of plots, including histograms, scatter plots, box-
whisker plots, bar plots, dot plots, line charts, pie charts, and Q-Q plots. 
 
13.2.1  HISTOGRAMS 

Histograms are graphical representations of the frequency distribution of numeric data. 
Unlike bar plots, histograms are designed for continuous data and divide the data into 
intervals or "bins." The height of each bar reflects the number of data points falling within 
each bin. 
 

Histograms are useful for: 
 Understanding the overall shape of the data distribution (e.g., normal, skewed). 
 Detecting outliers, gaps, and clusters. 
 Comparing distributions of different datasets. 

 
Histograms are used to visualize the frequency distribution of numeric data. In R, the hist() 
function provides a simple way to generate histograms with customizable options for binning, 
coloring, and labeling. 
 

13.2.2 Syntax: 

hist(x, breaks, main, xlab, ylab, col, border, ...) 
 x: A numeric vector containing the data values. 
 breaks: Specifies the number of bins or intervals. 
 main: Title of the histogram. 
 xlab/ylab: Labels for the X-axis and Y-axis. 
 col: Fill color for the bars. 
 border: Color for the borders of the bars. 
 

13.2.3  R Code Example 

# Generate random data following a normal distribution 
data <- rnorm(100, mean =50, sd =10) 
# Create a histogram 
hist(data, main ="Histogram of Data", xlab ="Values", 
     col ="blue", 
     border ="black") 
 
Below is the histogram created using the above code. The data values (grouped into intervals) 
are shown on the X-axis, and their frequencies are displayed on the Y-axis: 
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13.2.4  Explanation of Code 

1. rnorm(100, mean = 50, sd = 10): Creates 100 random values from a 
normal distribution with a mean of 50 and standard deviation of 10. 

2. hist(): Generates the histogram: 
o main = "Histogram of Data": Sets the title of the plot. 
o xlb = "Values": Adds a label to the X-axis. 
o col = "blue": Fills the bars with blue color. 
o border = "black": Outlines the bars with a black border. 

 

13.2.5 Applications 

 Helps identify the data's shape (e.g., normal, skewed). 
 Useful in spotting outliers, clusters, and gaps. 
 Aids in comparing data distributions. 

 
13.3  SCATTER PLOTS: 

Scatter plots visualize the relationship between two continuous variables. Each point on   
the plot represents a pair of values from the dataset. Scatter plots help in: 
 Identifying trends (e.g., positive, negative, or no correlation). 
 Spotting clusters or groups in data. 
 Detecting outliers or anomalies. 

 

13.3.1 Syntax 

plot(x, y, main, xlab, ylab, col, pch, ...) 
 x, y: Numeric vectors for the X and Y axes. 
 main: Title of the plot. 
 xlab/ylab: Axis labels. 
 col: Point color. 
 pch: Point style (e.g., circle, triangle). 

 
13.3.2 R Code Example 

# Generate random data 
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x <- rnorm(50) 
y <- 2 * x + rnorm(50) 
# Create a scatter plot 
plot(x, y, main ="Scatter Plot", xlab ="X-axis", 
     ylab ="Y-axis", 
     col ="red", 
     pch =16) 

 

13.3.3  Applications 

 Understanding relationships (e.g., linear or non-linear). 
 Identifying clusters or grouping patterns. 
 Detecting outliers or anomalies. 
 

13.4 BOX-WHISKER PLOTS: 

Box-whisker plots (box plots) provide a summary of the data distribution by displaying 
the median, quartiles, and potential outliers. Each box represents the interquartile range 
(IQR), while whiskers extend to the smallest and largest values within 1.5 times the IQR. 
Box plots are particularly useful for: 

 Comparing distributions across multiple groups. 
 Identifying outliers and variability. 
 Visualizing the central tendency and spread of data. 

 

13.4.1  Syntax 

boxplot(x, main, xlab, ylab, col, border, ...) 
 x: Data vector or a formula (e.g., values ~ group). 
 main: Title of the plot. 
 xlab/ylab: Axis labels. 
 col: Fill color of boxes. 
 border: Border color. 
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13.4.2 R Code Example 

# Generate grouped data 
group <-rep(c("A","B","C"), each =10) 
values <-c(rnorm(10,5), rnorm(10,6), rnorm(10,7)) 
# Create a boxplot 
boxplot(values ~ group, main ="Box-Whisker Plot Example", 
        xlab ="Group", ylab ="Values", 
        col =c("cyan","magenta","yellow")) 

 

13.4.2 Applications 

 Comparing distributions between groups. 
 Identifying outliers. 
 Analyzing variability within and across groups. 

 

13.5 BAR PLOTS: 

Bar plots are graphical representations of categorical data using rectangular bars. The 
length or height of the bars corresponds to the frequency or magnitude of the category. Bar 
plots are ideal for: 

 Visualizing categorical comparisons. 
 Summarizing grouped data. 
 Displaying survey results or counts. 

 

13.5.1  Syntax 

barplot(height, names.arg, col, main, xlab, ylab, ...) 
 height: Numeric vector of bar heights. 
 names.arg: Labels for the bars. 
 col: Bar fill color. 
 main: Title of the plot. 
 xlab/ylab: Axis labels. 
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13.5.2  R Code Example 

# Data for bar plot 
values <-c(5,10,15,20) 
labels <-c("A","B","C","D") 
# Create a bar plot 
barplot(values, names.arg = labels, col ="lightblue", 
        main ="Bar Plot Example", xlab ="Categories", 
        ylab ="Values") 

 

13.5.3 Applications 

 Visualizing categorical comparisons. 
 Highlighting frequencies or counts for categories. 
 Summarizing survey responses or grouped data. 

 

13.6 DOT PLOTS: 

Dot plots are simple graphs where each data point is represented by a dot along an 
axis. They are particularly useful for displaying the distribution of small datasets or 
comparing values across categories. Dot plots provide a clear view of individual 
observations. 
 

13.6.1 Syntax 

stripchart(x, method, main, xlab, ylab, col, ...) 
Key Parameters: 

 x: Numeric vector of data. 
 method: Method of plotting (e.g., "stack", "jitter", "overplot"). 
 main: Title of the plot. 
 xlab/ylab: Axis labels. 
 col: Color of dots. 

 

13.6.2 R Code Example 

# Generate data 
values <-c(5,7,7,10,15,15,15,20) 
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# Create a dot plot 
stripchart(values, 
           method ="stack", main ="Dot Plot Example", 
           xlab ="Values", col ="darkgreen", 
           pch =19) 

 

13.6.3 Applications 

 Small Data Analysis: Display individual observations. 
 Highlighting Clusters: Spot repeated values. 
 Comparison: Compare data across categories. 

13.7 LINE CHARTS IN R: NUMERIC AND CATEGORICAL DATA: 

Line charts are one of the most common and effective tools for visualizing data trends 
over time or across categories. They are particularly useful for highlighting patterns, changes, 
and comparisons in datasets. In R, creating line charts is straightforward and flexible, 
allowing for extensive customization of styles, labels, and additional elements like legends 
and grids. Whether you are working with purely numeric data or categorical variables, R 
provides functions that can handle both types seamlessly. 
 

This guide explains the process of creating line charts for numeric and categorical 
data, including practical examples and syntax breakdowns. By the end, you will be able to 
create customized line charts suitable for your specific analysis and presentation needs. 
 

13.8 LINE CHART WITH NUMERIC DATA: 

A line chart with numeric data connects points where both x and y values are numeric. 

13.8.1 Syntax 

plot(x, y, type = "o", col = "color", lwd = line_width, pch = 
point_type, 
     xlab = "X-axis Label", ylab = "Y-axis Label", main = 
"Title") 
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 x: Numeric vector specifying x-coordinates. 
 y: Numeric vector specifying y-coordinates. 
 type: Defines the plot type: 

o "l": Lines only. 
o "p": Points only. 
o "o": Both points and lines. 

 col: Line and point color. 
 lwd: Line width. 
 pch: Point type (e.g., 16 for filled circles). 
 xlab, ylab, main: Labels for the axes and title. 

 

13.8.2  Example 

# Numeric Data Example 
x <- 1:10                       # Numeric x-coordinates 
y <- c(2, 5, 7, 8, 4, 6, 9, 10, 8, 7)  # Numeric y-coordinates 
# Create Line Chart 
plot(x, y, type = "o", col = "blue", lwd = 2, pch = 16, 
     xlab = "X-Axis (Numeric)", ylab = "Y-Axis (Numeric)", 
main = "Line Chart - Numeric Data") 

 

13.9 LINE CHART WITH CATEGORICAL DATA: 

For categorical data, the x-axis represents categories, and the y-axis shows numeric 
values. Categories must be handled as factors or displayed using custom axis labels. 
 

13.9.1 Syntax 

plot(values, type = "o", col = "color", lwd = line_width, pch 
= point_type, 
     xaxt = "n", xlab = "X-axis Label", ylab = "Y-axis Label", 
main = "Title") 
axis(1, at = 1:length(categories), labels = categories) 

 values: Numeric y-values corresponding to categories. 
 xaxt = "n": Suppresses default x-axis. 
 axis(): Customizes the x-axis: 
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o 1: Bottom axis. 
o at: Positions for axis labels. 
o labels: Text for axis labels. 

 

13.9.2 Example 

# Categorical Data Example 
Categories<-c("A","B","C","D","E") # Categorical x-coordinates 
values <- c(3, 5, 2, 8, 7)   # Numeric y-coordinates 
# Create Line Chart 
plot(values, type = "o", col = "darkgreen", lwd = 2, pch = 16, 
     xaxt = "n", xlab = "Categories", ylab = "Values", main = 
"Line Chart - Categorical Data") 
# Add Category Labels 
axis(1, at = 1:length(categories), labels = categories) 

 

13.10 COMBINED LINE CHART: 

You can combine multiple data series in a single line chart to compare trends. 

13.10.1 Syntax 

plot(x, y1, type = "o", col = "color1", lwd = line_width1, pch  
= point_type1,xaxt = "n", xlab = "X-axis Label", ylab =  
"Y-axis Label", main = "Title") 
lines(x, y2, type = "o", col = "color2", lwd = line_width2, 
pch = point_type2) 
axis(1, at = 1:length(categories), labels = categories) 
legend("position", legend = c("Label1", "Label2"), col = 
c("color1", "color2"), 
       pch = c(point_type1, point_type2), lty = 1) 
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13.10.2 Example 

# Data for Combined Line Chart 
categories <- c("A", "B", "C", "D", "E") 
numeric_x <- 1:5 
values1 <- c(3, 5, 2, 8, 7)  # Numeric y-values for series 1 
values2 <- c(4, 6, 3, 7, 5)  # Numeric y-values for series 2 
# Create Line Chart 
plot(numeric_x, values1, type = "o", col = "blue", lwd = 2, 
pch = 16,xaxt = "n", xlab = "Categories", ylab = "Values", 
main = "Combined Line Chart") 
lines(numeric_x, values2, type = "o", col = "red", lwd = 2, 
pch = 17) 
 
# Add Category Labels 
axis(1, at = numeric_x, labels = categories) 
 
# Add Legend 
legend("topright", legend = c("Series 1", "Series 2"), col = 
c("blue", "red"), 
       pch = c(16, 17), lty = 1) 

 

13.11 CHARTS IN R: PIE CHARTS, BAR CHARTS, Q-Q PLOTS, AND CURVES: 

This section provides a detailed guide on creating Pie Charts, Bar Charts, Q-Q Plots, 
and Curves in R, complete with syntax, examples, and additional tips for effective data 
visualization. By mastering these charts, you can visually represent data insights in a variety 
of contexts. 
 
13.12  PIE CHARTS: 

Pie charts are used to represent proportions or percentages of a whole. Each slice of 
the pie corresponds to a category's proportion. 

Pie charts are a popular way to visualize proportions or percentages of a whole. They 
are especially useful for showing how individual parts contribute to the total. Each slice of 
the pie represents a specific category, and the size of the slice is proportional to its value. 
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13.12.1 Syntax 

pie(x, labels, col, main) 
 x: Numeric vector of values to be represented. 
 labels: Character vector of category names. 
 col: Colors for the slices. 
 main: Title for the chart. 

 
13.12.2 Example 

# Example Data 
values <- c(25, 15, 35, 25) 
categories <- c("Category A", "Category B", "Category C", 
"Category D") 
 
# Create Pie Chart 
pie(values, labels = categories, col =rainbow(length(values)), 
    main = "Pie Chart Example") 

 

13.13  BAR CHARTS: 

Bar charts are commonly used for comparing quantities across different categories. 
Each bar's height represents the magnitude of the corresponding category. This chart type is 
ideal for showing trends or differences between groups. 
 

13.13.1  Syntax 

barplot(height, names.arg, col, xlab, ylab, main, beside) 
 height: Numeric vector of bar heights. 
 names.arg: Character vector of category labels. 
 col: Colors for the bars. 
 xlab, ylab: Labels for the x-axis and y-axis. 
 main: Title for the chart. 
 beside: Logical value; if TRUE, bars are side-by-side. 
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13.13.2 Example 

# Example Data 
values <- c(10, 20, 15, 25) 
categories <- c("A", "B", "C", "D") 
 
# Create Bar Chart 
barplot(values, names.arg = categories, col = "lightblue", 
        xlab = "Categories", ylab = "Values", main = "Bar 
Chart Example") 

 

13.14 Q-Q PLOTS: 

Quantile-Quantile (Q-Q) plots are used to assess whether a dataset follows a specified 
theoretical distribution, such as the normal distribution. If the data points align closely with 
the reference line, it indicates a good fit to the distribution. 
 

13.14.1  Syntax 

qqnorm(y, main) 
qqline(y, col, lwd) 

 y: Numeric vector of data. 
 main: Title for the plot. 
 col: Color of the reference line. 
 lwd: Width of the reference line. 

 

13.14.2 Example 

# Example Data 
data <- rnorm(100)  # Generate random normal data 
# Create Q-Q Plot 
qqnorm(data, main = "Q-Q Plot Example") 
qqline(data, col = "red", lwd = 2) 
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13.15 CURVES: 

Curves are used to plot mathematical functions or models over a continuous range of 
values. They are especially useful for visualizing relationships, trends, or behaviors of 
functions. 
 
13.15.1 Syntax 

curve(expr, from, to, col, lwd, xlab, ylab, main) 
 expr: Expression defining the function. 
 from, to: Range for the x-axis. 
 col: Color of the curve. 
 lwd: Line width of the curve. 
 xlab, ylab, main: Labels and title for the plot. 
 

13.15.2 Example 

# Create Curve 
curve(x^2, from = -10, to = 10, col = "blue", lwd = 2, 
      xlab = "X", ylab = "Y", main = "Curve Example: y = x^2") 
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13.16 SUMMARY: 
 
This lesson provides an overview of R’s graphical functions for data visualization, 

emphasizing their role in statistical analysis. It explores high-level plotting techniques such as 
histograms, scatter plots, box plots, bar charts, and line graphs, which enable comprehensive 
data representation. Additionally, low-level functions for customization enhance the 
interpretability of these visualizations. The lesson ensures a thorough understanding of R’s 
plotting capabilities, outlining their implementation and significance in data analysis. The 
conceptual framework of these graphical methods is examined for better comprehension, 
demonstrating their effectiveness in representing various data distributions and relationships. 
 
13.17  SELF ASSESSMENT QUESTIONS: 
  

1. What is the primary purpose of high-level plotting functions in R? 
2. What parameters are used in the hist() function to customize a histogram in R? 
3. What do the x and y vectors represent in the plot() function for creating a scatter plot? 
4. What does a box-whisker plot represent, and how can it be useful for understanding 

data? 
5. Explain how you would modify the barplot() function to display bar heights based on 

categorical data. 
6. How are dot plots different from histograms and scatter plots? 
7. Describe the difference in creating line charts with numeric data versus categorical 

data in R. 
8. 8.What is the role of the labels parameter in the pie() function, and how does it affect 

the chart? 
9. How do you use the qqnorm() and qqline() functions to create a Q-Q plot in R? 
10. How do you create a curve in R using the curve() function, and what is its purpose? 

 
13.18  SUGGESTED READINGS 
 

1.  R Graphics Cookbook by Winston Chang 
2.  Data Visualization with ggplot2 by Hadley Wickham 
3.  R for Data Science by Hadley Wickham and Garrett Grolemund 
4.  Interactive Data Visualization with R by Carson Sievert 
5.  Data Visualization with ggplot2 by Hadley Wickham 
6. The Art of Data Science by Roger D. Peng and Elizabeth Matsui 

 

 

                         Dr. S. BHANU PRAKASH 



LESSON -14 

R-GRAPHICS 
 
OBJECTIVES: 
 
 To identify how visual representation, enhance data interpretation. 
 To explore and apply different graphical techniques like histograms, scatter plots, and 

box plots in R. 
 To modify colors, labels, titles, and themes for better readability and presentation. 
 To evaluate different plotting techniques based on data structure and distribution. 

 
STRUCTURE: 
 
14.1  Introduction 

14.2  Overview of Low-Level Plotting Functions  

14.3  Adding Lines 

14.4  Adding Segments 

14.5  Adding Points to Plots 

14.6  Adding Polygons to Plots 

14.7  Adding Grids to the Plotting Region 

14.8  Adding Text Using text() 

14.9  Adding Legends Usinglegend() 

14.10 Adding Marginal Text Usingmtext() 

14.11 Modifying and Adding Axes 

14.12 Putting Multiple Plots on a Single Page 

14.13 Summary 

14.14 Self-Assessment Questions 

14.15 Suggested Readings 

14.1 INTRODUCTION:  

This lesson provides an in-depth look at controlling plot options using low-level 
plotting functions in R. These tools allow for precise customization of visualizations, 
enabling users to add lines, segments, points, polygons, grids, text, legends, and axes to 
existing plots. Additionally, techniques for creating multiple plots on a single page are 
discussed. 
 
14.2  OVERVIEW OF LOW-LEVEL PLOTTING FUNCTIONS: 

 
Low-level plotting functions are used to add or modify elements in an existing plot. 

Unlike high-level functions that create new plots, low-level functions enhance the current 
plotting region. 
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Common Low-Level Functions 
 

 lines(): Adds connected line segments. 
 segments(): Draws line segments between pairs of points. 
 points(): Adds individual points. 
 polygon(): Adds a filled polygon. 
 grid(): Adds a customizable grid. 
 text(): Adds text annotations. 
 legend(): Adds a legend to the plot. 
 mtext(): Adds text in the margins of the plot. 
 axis(): Customizes or adds axes to the plot. 
 

14.3 ADDING LINES: 
 

The lines() function in R is a versatile low-level plotting tool that allows you to add 
connected line segments to an existing plot. This is particularly useful for enhancing 
visualizations, such as overlaying trends, fitting curves, or marking thresholds. 
 

14.3.1  Syntax 
 

lines(x, y, col,lwd,lty, type) 
Arguments 

 x, y: Numeric vectors specifying the coordinates for the line segments. 
 col: The color of the line. This can be specified using names (e.g., "red"), 

hexadecimal codes (e.g., "#FF0000"), or functions like rainbow(). 
 lwd: Line width, with the default being 1. Larger values produce thicker lines. 
 lty: Line type, specified as an integer or string. Common types include: 

o "solid" (default) 
o "dashed" 
o "dotted" 

 type: The type of line to be drawn. Use "l" for lines or "b" for both lines and points. 
 

14.3.2 :R Code Example(Adding a Simple Line) 
 

x <- 1:10 
y <- x^2 
plot(x, y, type ="n", main ="Simple Line Example",xlab="X-Axis",ylab="Y-Axis") 
lines(x, y, col ="blue",lwd=2,lty="solid") 
This example generates a plot with a simple blue line representing the quadratic relationship. 
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14.3.3:R Code Example(Overlaying Multiple Lines) 
 
x <-seq(0,2*pi,length.out=100) 
y1 <-sin(x) 
y2 <-cos(x) 
plot(x, y1, type ="n", main ="Overlaying Multiple Lines",xlab="X",ylab="Y") 
lines(x, y1, col ="red",lwd=2,lty="dashed") 
lines(x, y2, col ="blue",lwd=2,lty="dotted") 
legend("topright", legend =c("sin(x)","cos(x)"), col 
=c("red","blue"),lty=c("dashed","dotted")) 
This demonstrates how to overlay two functions, sin(x) and cos(x), with distinct colors and 
line types for clear differentiation. 

 
14.3.4:R Code Example(Customizing Line Appearance) 
 
x <-seq(0,10, by =0.1) 
y <-exp(-x)*sin(2*pi* x) 
plot(x, y, type ="n", main ="Custom Line Appearance",xlab="Time",ylab="Amplitude") 
lines(x, y, col ="purple",lwd=3,lty="dotdash") 
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This example highlights advanced customization using lwd for thicker lines and lty for a 
mixed line pattern. 

 
14.4 ADDING SEGMENTS: 
 

In data visualization, it is often necessary to emphasize specific parts of a plot or connect 
points to highlight relationships. The segments() function in R is a powerful tool that allows 
you to add straight-line segments to an existing plot. These segments can represent intervals, 
thresholds, or transitions, making your visualizations more informative and tailored to your 
analytical goals. 
 
The flexibility of segments() allows users to precisely control the appearance and placement 
of each segment, making it ideal for annotating plots or illustrating trends. Whether you're 
highlighting data ranges, connecting observations, or adding contextual markers, the 
segments() function ensures clarity and precision in your graphical output. 
 
14.4.1 Syntax 
 
segments(x0, y0, x1, y1, col,lwd,lty) 
Arguments 

 x0, y0: Numeric vectors specifying the starting coordinates of the line segments. 
 x1, y1: Numeric vectors specifying the ending coordinates of the line segments. 
 col: The color of the segments. Colors can be defined using names (e.g., "red"), 

hexadecimal codes (e.g., "#FF0000"), or functions like rainbow(). 
 lwd: Line width. The default value is 1, with larger values creating thicker segments. 
 lty: Line type, such as: 

o "solid" (default) 
o "dashed" 
o "dotted" 
o "dotdash" 
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14.4.2: R Code Example(Simple Segments) 
 
plot(1:10,1:10, type ="n", main ="Simple Segments",xlab="X-Axis",ylab="Y-Axis") 
segments(x0 =2, y0 =2, x1 =8, y1 =8, col ="blue",lwd=2,lty="solid") 

 
14.4.3: R Code Example(Multiple Segments) 
 
x_start<-c(1,3,5,7) 
y_start<-c(2,4,6,8) 
x_end<-c(2,4,6,8) 
y_end<-c(3,5,7,9) 
plot(1:10,1:10, type ="n", main ="Multiple Segments",xlab="X-Axis",ylab="Y-Axis") 
segments(x0 =x_start, y0 =y_start, x1 =x_end, y1 =y_end, col ="red",lwd=2,lty="dashed") 

 
14.4.4: R Code Example(Highlighting a Range) 
 
x <-seq(1,10, by =1) 
y <- x^2 
plot(x, y, type ="b", main ="Highlighting a Range",xlab="X-Axis",ylab="Y-Axis") 
segments(x0 =3, y0 =9, x1 =7, y1 =49, col ="green",lwd=3,lty="dotdash") 
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14.5 ADDING POINTS TO PLOTS: 
 
Points play a fundamental role in data visualization, serving as the building blocks of 
scatterplots, line graphs, and other graphical representations. The points() function in R is a 
low-level plotting function that allows you to add individual or multiple points to an existing 
plot. This makes it a versatile tool for customizing visualizations, such as overlaying 
additional data, marking specific observations, or enhancing plot clarity. 
By leveraging the extensive customization options available in the points() function, such as 
controlling the size, color, and shape of points, you can create precise and informative plots 
tailored to your needs. 
 
14.5.1 Syntax 
 
points(x, y, col,pch,cex) 
Arguments 

 x, y: Coordinates of the points to be added. 
 col: Point color. Accepts color names (e.g., "red") or codes (e.g., "#FF0000"). 
 pch: Point character or symbol type. Common options include: 

o 16: Solid circle (default). 
o 1: Hollow circle. 
o 2: Triangle. 
o 3: Plus symbol. 

 cex: Scaling factor for the size of points. The default value is 1. 
 
14.5.2: R Code Example(Adding Simple Points) 
 
plot(1:10,(1:10)^2, type ="n", main ="Adding Points",xlab="X-Axis",ylab="Y-Axis") 
points(x=1:10, y=(1:10)^2, col="blue",pch=16,cex=1.5) 
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14.5.3: R Code Example(Highlighting Specific Points) 
 
x <- 1:10 
y <- x^2 
plot(x, y, type ="b", main ="Highlighting Points") 
points(5,25,col="red",pch=19,cex=2)# Highlight (5, 25) 

 
14.5.4: R Code Example(Customizing Multiple Points) 
 
x <- 1:10 
y <- x^2 
plot(x, y, type ="n", main ="Customizing Points",xlab="X",ylab="Y") 
points(x, y, col = rainbow(10),pch=1:10,cex=seq(1,2,length.out=10)) 
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14.6  ADDING POLYGONS TO PLOTS: 
 

Polygons are versatile graphical elements used to represent areas, boundaries, or regions on a 
plot. In R, thepolygon() function allows you to draw filled shapes defined by a series of 
vertices. This makes it an essential tool for highlighting specific regions, creating shaded 
areas, or representing geometric shapes in your visualizations. 
 
The polygon() function is particularly useful in creating custom visualizations, such as: 

 Shading areas under curves or between lines. 
 Highlighting specific data ranges or regions. 
 Adding geometric shapes for visual emphasis. 

By combining polygons with other low-level functions, you can enhance the interpretability 
and aesthetic appeal of your plots. 
 
14.6.1 Syntax 
 

polygon(x, y, col, border,lty,lwd, density, angle) 
Arguments 

 x, y: Coordinates of the vertices defining the polygon. 
 col: Fill color of the polygon. 
 border: Color of the polygon’s border (use NA for no border). 
 lty: Line type for the border (e.g., solid, dashed). 
 lwd: Line width for the border. 
 density: Line density for shading (in number of lines per inch). 
 angle: Angle of the shading lines. 
 

14.6.2: R Code Example(Simple Polygon) 
 

x <-c(1,3,5,2) 
y <-c(1,5,3,1) 
plot(0:6,0:6, type ="n", main ="Simple Polygon") 
polygon(x, y, col ="lightblue", border ="blue",lwd=2) 
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14.6.3: R Code Example(Shading an Area Under a Curve) 
 

x <-seq(0,2*pi,length.out=100) 
y <-sin(x) 
plot(x, y, type ="l", main ="Shading Area Under Curve",xlab="X",ylab="Y") 
polygon(c(x, rev(x)),c(y,rep(0,length(y))), col ="lightgray", border =NA) 
lines(x, y, col ="blue",lwd=2) 

 
14.6.4: R Code Example(Custom Shading) 
 

x <-c(2,4,6,4) 
y <-c(2,6,4,2) 
plot(0:8,0:8, type ="n", main ="Polygon with Custom Shading") 
polygon(x, y, col ="gray", border ="black", density =20, angle =45) 
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14.7. ADDING GRIDS TO THE PLOTTING REGION: 
 
Grids are a helpful visual element for organizing and aligning plot elements. The grid() 
function in R allows you to add a customizable grid to the plotting region, enhancing the 
interpretability of data points or patterns. Grids can be used in scatterplots, line graphs, bar 
charts, and other visualizations where alignment aids in data comparison. 
 
14.7.1 Syntax 
 
grid(nx,ny, col,lty,lwd) 
Arguments 

 nx: Number of vertical grid lines. Defaults to NULL, which aligns with major x-axis 
ticks. 

 ny: Number of horizontal grid lines. Defaults to NULL, which aligns with major y-
axis ticks. 

 col: Color of the grid lines (default is light gray). 
 lty: Line type (e.g., "solid", "dashed", "dotted"). 
 lwd: Line width. 

Ifnx or ny is NULL, the grid aligns with the existing axis tick marks. 
 
14.7.2: R Code Example(Simple Grid Aligned with Axes) 
 

x <- 1:10 
y <- x^2 
plot(x, y, type ="o", main ="Plot with Simple Grid", col ="blue",pch=16) 
grid(col ="gray",lty="dotted")  
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This adds a dotted gray grid to the plotting region, aligning with the tick marks on the axes. 
 
14.7.3: R Code Example(Custom Grid with Specified Lines) 
 

x <-seq(0,2*pi,length.out=50) 
y <-sin(x) 
plot(x, y, type ="l", col ="blue",lwd=2, main ="Custom Grid Example",xlab="X",ylab="Y") 
grid(nx=8,ny=6, col ="red",lty="dashed",lwd=0.5) 

 
This example demonstrates a custom grid with 8 vertical and 6 horizontal lines, styled with 
red dashed lines. 
 
14.8  ADDING TEXT USING text(): 
 
Thetext() function places text at specified coordinates within the plotting region. Text 
annotations can highlight key data points, provide additional context, or label specific regions 
of a plot. This is often used for labeling specific points or adding descriptions, ensuring the 
plot conveys a clear message. 
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14.8.1 Syntax 
 
text(x, y, labels, col, cex) 

 x, y: Coordinates for placing the text. 
 labels: Text to display. 
 col: Text color. 
 cex: Text size. 

 
14.8.2: R Code Example(Annotating a Scatterplot) 
 
x <- 1:10 
y <- x^2 
plot(x, y, main = "Scatterplot with Text Annotations", col = "blue", pch = 16) 
text(5, 50, "This is a point!", col = "red", cex = 1.2) 
 

 
14.9 ADDING LEGENDS USING legend(): 
 
Legends play a crucial role in explaining the meaning of symbols, colors, or line styles used 
in a plot. The legend() function creates a descriptive box that enhances the interpretability of 
the visualization. Properly labeled legends make complex plots accessible to the audience. 
 
14.9.1 Syntax 
 

legend(x, y, legend, col, pch, lty, bty) 
 x, y: Coordinates or position of the legend (e.g., "topright", "bottomleft"). 
 legend: Vector of labels for the legend. 
 col, pch, lty: Colors, point types, and line styles matching the plot. 
 bty: Box type (e.g., "o" for a box, "n" for none). 

 
14.9.2:R Code Example(Adding a Legend to a Line Plot) 
 

x <- 1:10 
y1 <- x^2 
y2 <- x^1.5 
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plot(x, y1, type = "l", col = "blue", lwd = 2, main = "Plot with Legend") 
lines(x, y2, col = "green", lwd = 2) 
legend("topright", legend = c("y = x^2", "y = x^1.5"), col = c("blue", "green"), lty = 1) 

 
14.10 ADDING MARGINAL TEXT USING mtext(): 
 
The mtext() function is used to place text in the margins of a plot. This feature is particularly 
useful for adding axis titles, supplementary information, or labels that do not fit within the 
main plotting region. Marginal text adds contextual information, enhancing the overall 
presentation. 
 
14.10.1 Syntax 
 
mtext(text, side, line, col) 

 text: Text to display. 
 side: 1 = bottom, 2 = left, 3 = top, 4 = right. 
 line: Line number in the margin. 
 col: Text colour. 

 
14.10.2:R Code Example(Adding Axis Labels with mtext()) 
 

plot(1:10, (1:10)^2, main = "Marginal Text Example") 
mtext("Bottom Axis Label", side = 1, line = 2, col = "blue") 
mtext("Left Axis Label", side = 2, line = 2, col = "red") 
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14.11 MODIFYING AND ADDING AXES: 
 
Axes are essential components of a plot as they provide the framework for interpreting the 
data. Theaxis() function allows users to customize or add new axes, improving the clarity and 
precision of the visualization. By modifying tick marks, labels, and axis styles, you can make 
your plot more informative. 
 
14.11.1 Syntax 
 

axis(side, at, labels, col, lwd) 
 side: 1 = bottom, 2 = left, 3 = top, 4 = right. 
 at: Locations of tick marks. 
 labels: Labels for the tick marks. 
 col, lwd: Colors and widths of the axis lines. 
 

14.11.1:R Code Example(Custom Axes) 
 

plot(1:10, (1:10)^2, type = "n", main = "Custom Axes") 
axis(1, at = 1:10, labels = letters[1:10], col = "blue") 
axis(2, at = seq(0, 100, 20), col = "red") 
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14.12 PUTTING MULTIPLE PLOTS ON A SINGLE PAGE: 
 
Arranging multiple plots on a single page is a powerful feature for comparative analysis and 
presentation. Thepar() function provides the capability to divide the plotting region into 
multiple sections, enabling the creation of grid-like layouts for multiple visualizations. 
 
14.12.1 Syntax 
 

par(mfrow = c(nrows, ncols)) 
 nrows, ncols: Number of rows and columns for the layout. 
 

14.12.2: R Code Example(Four Plots on a Single Page) 
 

par(mfrow = c(2, 2))  # Divide into 2 rows and 2 columns 
plot(1:10, (1:10)^2, main = "Plot 1") 
plot(1:10, sqrt(1:10), main = "Plot 2") 
plot(1:10, log(1:10), main = "Plot 3") 
plot(1:10, exp(1:10/10), main = "Plot 4") 
par(mfrow = c(1, 1))  # Reset layout to single plot 
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14.13 SUMMARY: 
 
Data visualization in R is essential for understanding and interpreting data effectively. 

It enables users to explore and apply various graphical techniques such as histograms, scatter 
plots, and box plots to represent data visually. Customization options like colors, labels, and 
titles enhance the clarity and aesthetics of these visualizations. Additionally, comparing 
different plotting methods helps in selecting the most suitable approach for various data 
types, ensuring accurate and meaningful insights. Mastering these techniques allows for 
better data-driven decision-making and improved communication of statistical findings. 

 
14.14 SELF ASSESSMENT QUESTIONS: 
  

1. What is the purpose of low-level plotting functions in R, and how do they differ from 
high-level plotting functions? 

2. Describe the functionality of the lines() function in R. What arguments can be used to 
customize the appearance of the lines? Provide an example where you overlay 
multiple lines on the same plot. 

3. How does the segments() function enhance a plot? What are the key arguments for 
drawing line segments in R, and how can you modify their appearance? 

4. Explain the role of the points() function in R. How can you customize the appearance 
of individual points in a plot? Provide an example where you highlight specific points. 

5. What is the purpose of the polygon() function, and how can it be used to shade areas 
or highlight regions in a plot? Provide an example of creating a polygon and adding 
shading under a curve. 

6. How can you add a customizable grid to a plot using the grid() function? Describe the 
arguments involved in modifying the grid's appearance. 

7. What are the use cases for adding text annotations in plots using the text() function? 
How do you specify the position and appearance of the text? Provide an example 
where text is added to annotate a plot. 

8. How does the par() function in R allow users to display multiple plots on a single 
page? Write an example that arranges four plots in a 2x2 layout.What is the primary 
purpose of high-level plotting functions in R? 
 

14.15 SUGGESTED READINGS: 
 

1.  R Graphics Cookbook by Winston Chang 
2.  The Art of R Programming by Norman Matloff 
3.  R for Data Science by Hadley Wickham and Garrett Grolemund 
4.  R Graphics by Paul Murrell 
5.  R in Action by Robert I. Kabacoff 
6.  The Art of Data Science by Roger D. Peng and Elizabeth Matsui 
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 LESSON -15 

R-GRAPHICS 
 
OBJECTIVES: 
 

1. To understand the Concept of ANOVA. 
2. To identify and Verify ANOVA Assumptions. 
3. To perform One-Way ANOVA in R. 
4. To perform Two-Way ANOVA in R. 

 
STRUCTURE: 
 
15.1 Introduction 

15.2 Assumptions of ANOVA 

15.3 One-Way ANOVA 

15.3.1 Syntax 

15.3.2 R Code Example 

15.4 One-Way ANOVA 

15.4.1 Syntax 

15.4.2 R Code Example 

15.5 Summary 

15.6 Self-Assessment Questions 

15.7 Suggested Readings 

15.1 INTRODUCTION:  

This lesson provides an in-depth overview of performing one-way and two-way ANOVA 
using R's built-in functions. ANOVA (Analysis of Variance) is a powerful statistical 
technique used to compare means across multiple groups and assess whether the observed 
differences are statistically significant. By analyzing the variability within and between 
groups, ANOVA allows researchers to draw meaningful conclusions about the factors 
influencing their data. R provides robust tools for conducting ANOVA, and this guide covers 
the necessary syntaxes, examples, and interpretations. 
 
15.2 ASSUMPTIONS Of ANOVA: 
 

o Normality: Residuals should be normally distributed.  
o Homogeneity of Variance: Variances should be equal across groups.  
o Independence: Observations should be independent.  
Ensure proper experimental design to satisfy this assumption. 
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15.3 ONE-WAY ANOVA: 
 
One-way ANOVA is used to determine whether there are statistically significant differences 
between the means of three or more independent groups. It evaluates the impact of a single 
factor (categorical variable) on a continuous response variable. This method is widely used in 
experiments and studies where groups are formed based on different treatments or conditions. 
 
15.3.1 Syntax 
 

result <- aov(response_variable ~ factor_variable, data = dataset) 
summary(result) 

 response_variable: The numeric dependent variable. 
 factor_variable: The independent categorical variable (factor). 
 dataset: The data frame containing the variables. 
 

15.3.2 R Code Example 
 
# Sample data 
data <- data.frame( 
  treatment = rep(c("A", "B", "C"), each = 10), 
  value = c(rnorm(10, mean = 20, sd = 3),  
rnorm(10, mean = 25, sd = 3),  
rnorm(10, mean = 30, sd = 3)) 
) 
 
# Perform one-way ANOVA 
result <- aov(value ~ treatment, data = data) 
 
# Summary of ANOVA 
summary(result) 
 
Output:  
            Df Sum Sq Mean Sq F value   Pr(>F)     
treatment    2  660.0   330.0    35.7 2.62e-08 *** 
Residuals   27  249.6     9.2                      
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Interpretation: 
The summary output includes: 

 Degrees of Freedom (Df): Number of independent values in the calculation. 
 Sum of Squares (SS): Measures variability. 
 Mean Squares (MS): SS divided by Df. 
 F-value: Ratio of MS between groups to MS within groups. 
 p-value: Indicates if group means differ significantly. 

A p-value less than 0.05 suggests significant differences between groups, implying that at 
least one group mean is different from the others. 
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15.4  TWO-WAY ANOVA 
 
Two-way ANOVA is used when there are two independent categorical variables (factors) and 
one continuous dependent variable. It evaluates: 

1. The individual effect of each factor (main effects). 
2. The interaction effect between the two factors, showing whether the effect of one 

factor depends on the levels of the other factor. 
This method is particularly useful in experiments where multiple factors are varied 
simultaneously, allowing researchers to explore combined and independent influences on the 
response variable. 
 

15.4.1  Syntax 
 

result <- aov(response_variable ~ factor1 * factor2, data = dataset) 
summary(result) 

 factor1 and factor2: The two independent categorical variables. 
 factor1 * factor2: Includes main effects and interaction effects. 
 dataset: The data frame containing the variables. 
 

15.4.2 R Code Example 
 

# Sample data 
data <- data.frame( 
  fertilizer = rep(c("Low", "Medium", "High"), each = 10), 
  irrigation = rep(c("Low", "High"), times = 15), 
  yield = c(rnorm(10, mean = 30, sd = 5),  
rnorm(10, mean = 35, sd = 5),  
rnorm(10, mean = 40, sd = 5), 
rnorm(10, mean = 50, sd = 5), 
rnorm(10, mean = 55, sd = 5), 
rnorm(10, mean = 60, sd = 5)) 
) 
# Perform two-way ANOVA 
result <- aov(yield ~ fertilizer * irrigation, data = data) 
 
# Summary of ANOVA 
summary(result) 
 
Output: 
                      Df Sum Sq Mean Sq F value Pr(>F)   
fertilizer             2   1030   514.8   3.604  0.034 * 
irrigation             1      0     0.1   0.000  0.984 
fertilizer:irrigation  2      9     4.7   0.033  0.968   
Residuals             54   7714   142.9                  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
 

Interpretation: 
The output provides: 

1. Main Effects: The effect offertilizer and irrigation individually. 
2. Interaction Effect: Combined effect of fertilizer and irrigation (fertilizer:irrigation). 
3. p-values: Significance of main and interaction effects. 
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A significant interaction effect (p < 0.05) suggests that the effect of one factor depends on the 
levels of the other factor. If no interaction is present, the main effects can be interpreted 
independently. 

15.5 SUMMARY: 
 
This lesson provides a comprehensive guide to performing one-way and two-way 

ANOVA in R, covering their assumptions, syntax, implementation, and interpretation. 
Learners will understand the importance of ANOVA in comparing group means, ensuring 
assumptions like normality and homogeneity of variance are met, and analyzing variability 
within and between groups. Using R’s aov() function, they will conduct ANOVA, interpret 
key outputs like F-values and p-values, and assess statistical significance. Additionally, they 
will explore main and interaction effects in two-way ANOVA, applying these techniques to 
real-world scenarios for data-driven decision-making. 

 
15.6 SELF ASSESSMENT QUESTIONS: 
  

1. What are the key assumptions of ANOVA, and why are they important?  
2. How does one-way ANOVA differ from two-way ANOVA?  
3. How do you interpret the output of summary(aov(response_variable ~ factor_variable, 

data = dataset)) in R?  
4. Write the R syntax for conducting a two-way ANOVA with two categorical 

independent variables and one continuous dependent variable.  
5. A researcher performs an ANOVA test and finds a p-value of 0.03. What does this 

mean in terms of statistical significance? 
6. How can ANOVA results be used for decision-making in real-world scenarios? 
7. What post-hoc tests can be used after finding a significant result in ANOVA? 
 

15.7 SUGGESTED READINGS: 
 
1. Discovering Statistics Using R by Andy Field 
2. Linear Models with R by Julian J. Faraway 
3. Introductory Statistics with R by Peter Dalgaard 
4. The R Book by Michael J. Crawley 
5. Hands-On Programming with R by Garrett Grolemund 
6. Designing Experiments and Analyzing Data: A Model Comparison Perspective by       
    Maxwell & Delaney 
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