
STATISTICAL COMPUTING
USING R

M.Sc., STATISTICS First Year

Semester – I, Paper-II

Lesson Writers

Dr. R. Vishnu Vardhan

 Associate Professor
Department of Statistics
Pondicherry University

 Dr. Syed Jilani
 Department of Statistics
 University College of Sciences
 Acharya Nagarjuna University

Dr. D. Ramesh
Assistant Professor,
Department of Statistics and
Computer Applications, ANGRAU,
Agricultural College, Bapatla

Dr. S. Bhanu Prakash
Assistant Professor
Freshman Engineering Department
Dept. of Mathematics & Statistics
Godavari Global University
Rajamahendravaram

Editor:

Dr. R. Vishnu Vardhan
Associate Professor

Department of Statistics
Pondicherry University

.

Director, I/c

Prof. V.VENKATESWARLU
MA.,M.P.S., M.S.W.,M.Phil., Ph.D.

CENTREFORDISTANCEEDUCATION
ACHARAYANAGARJUNAUNIVERSITY

NAGARJUNANAGAR – 522510
Ph:0863-2346222,2346208,

0863-2346259(Study Material)
Website: www.anucde.info

e-mail:anucdedirector@gmail.com

M.Sc., STATISTICS - STATISTICAL COMPUTING USING R

First Edition2025

No. of Copies :

© Acharya Nagarjuna University

This book is exclusively prepared for the use of students of M.SC.(Statistics) Centre for
Distance Education, Acharya Nagarjuna University and this book is meant for limited

Circulation only.

Published by:

Prof. V.VENKATESWARLU,
Director, I/C
Centre for Distance Education,
Acharya Nagarjuna University

Printed at:

FOREWORD
Since its establishment in 1976, Acharya Nagarjuna University has been forging

ahead in the path of progress and dynamism, offering a variety of courses and research

contributions. I am extremely happy that by gaining ‘A+’ grade from the NAAC in the

year 2024, Acharya Nagarjuna University is offering educational opportunities at the UG,

PG levels apart from research degrees to students from over 221 affiliated colleges spread

over the two districts of Guntur and Prakasam.

The University has also started the Centre for Distance Education in 2003-04 with

the aim of taking higher education to the doorstep of all the sectors of the society. The

centre will be a great help to those who cannot join in colleges, those who cannot afford

the exorbitant fees as regular students, and even to housewives desirous of pursuing

higher studies. Acharya Nagarjuna University has started offering B.Sc., B.A., B.B.A.,

and B.Com courses at the Degree level and M.A., M.Com., M.Sc., M.B.A., and L.L.M.,

courses at the PG level from the academic year 2003-2004 onwards.

To facilitate easier understanding by students studying through the distance mode,

these self-instruction materials have been prepared by eminent and experienced teachers.

The lessons have been drafted with great care and expertise in the stipulated time by these

teachers. Constructive ideas and scholarly suggestions are welcome from students and

teachers involved respectively. Such ideas will be incorporated for the greater efficacy of

this distance mode of education. For clarification of doubts and feedback, weekly classes

and contact classes will be arranged at the UG and PG levels respectively.

It is my aim that students getting higher education through the Centre for

Distance Education should improve their qualification, have better employment

opportunities and in turn be part of country’s progress. It is my fond desire that in the

years to come, the Centre for Distance Education will go from strength to strength in the

form of new courses and by catering to larger number of people. My congratulations to

all the Directors, Academic Coordinators, Editors and Lesson-writers of the Centre who

have helped in these endeavors.

Prof. K.Gangadhara Rao
M.Tech.,Ph.D.,

 Vice-Chancellor I/c

 Acharya Nagarjuna University

M.Sc.–Statistics Syllabus

SEMESTER-I

102ST24: STATISTICAL COMPUTING USING R
Unit-I:

Introduction to R language: Objects (Atomics) -Basic types, modes and attributes, comments,
constants. R–Data Types: character, numeric, integer, logical, complex and raw data types.
R– Operators: arithmetic, relational, logical, assignment and miscellaneous operators. R–
Variables: variable assignment, data type, finding variables using ls()function, deleting
Variables using rm() function, R-I/O console functions-scan(), print(), cat(), format(), setwd()
and getwd() functions. R-vectors: creating vectors, vector assignment, manipulating vectors,
arithmetic, generating regular sequences, logical vectors, and charactervectors,index vectors,
selecting and modifying subsets of a vector. Manipulating character vectors using strsplit(),
paste(), grep(), gsub() functions; R-factors: creating factor variables, handling factordata,
generating factor levels using gl() function.

Unit-II:
R-Matrices: Creating matrices, arithmetic operators on matrices, matrix facilities, forming
partitioned matrices, cbind() and rbind() functions, R-Lists: creating a list, naming, accessing
and manipulating list elements, converting a list to a vector. R-Data frames: creation, adding
rows and variables to data frame, attach() and detach(), working with data frames, data
reshaping. Reading and getting data into R using files: reading data and writing data from / to
files of type CSV, EXCEL, text and other data type files using the save(), load(),
read.csv()and read.table(),write.csv() and write.table() functions. Retrieving files using
file.choose(),function.

Unit-III:
R – Control Structures: Decision making-if, if-else, ladder if-else, nested if-else, and switch
statements. Loops-repeat, while and for statements. Loop control statements -- break and
next. R – Functions: function definition, function components, built-in functions, user-
defined function, syntax of a function, function arguments, arguments matching, scope and
evaluation, calling a function, one-line functions, using default values in functions. Built in
R-functions and writing own R-functions or R-codes for small standard statistical problems
like finding summary statistics, correlation, one-sample t-test, two-sample t-test and paired
samples t-test, etc. Group manipulation using apply family of functions- apply, sapply, lapply
and tapply.

Unit-IV:
R-Probability Distributions: Computing values of pdf, cdf, quantile and generating samples
for bionomial, poission, normal, exponential, Weibull and other prominent distributions
using Built inR – functions. Plotting density and cumulative density curves for the
distributions. Built inR-syntaxes for the Shapiro-Wilk test of normality, Kolmogorov-
Smirnov test for one-sample and two-sample cases, Wilcoxon Mann-Whitney one-sample
and two-sample U- tests, chi- square tests for association and goodness of fit.Writing own R-
functions or R- codes: Fitting of binomial, Poisson, normal, exponential, Weibull and logistic
distributions based on a given frequency data and test for goodness of fit. Solving a non-
linear equation using Newton- Raphson method.

Unit-V:
R-Graphics: Use of high-level plotting functions for creating histograms, scatter plots, box-
whisker plots, bar plot, dot plot, line charts using numeric data and categorical data, pie
charts, bar Charts, Q-Q plot and curves. Controlling plot options using low-level plotting
functions, adding lines, segments, points, polygon, grid to the plotting region; Add text using
legend, text,mtex; and modify/addaxes, putting multiple plots ona single page. Built in R–
syntaxes for one-way ANOVA, two- way ANOVA.

BOOKS FOR STUDY:

1) Dr. Mark Gardener (2012): Beginning R – The Statistical Programming Language, Wiley India
Pvt Ltd.

2) W.N.Venables and D.M.Smith(2016):An Introduction to R

3) J.P.Lander (2014): R for Everyone, Pearson Publications

4) Garrrett Grolemund: Hands-On Programming with R

BOOKS FOR REFERENCES:

1) De Vries, A., and Meys, J. (2016). R For Dummies, Second Edition, John Wiley & Sons
Private Ltd, NY

2) Crawley,M,J.(2007).The R Book, JohnWiley and Sons Private Ltd.,NY.

CODE:102ST24
M.Sc DEGREE EXAMINATION

First Semester

Statistics::Paper- II-Statistical Computing Using R

MODEL QUESTION PAPER

Time: Three hours Maximum:70 Marks

Answer ONE question from each unit (5x14=70)

UNIT-I

1. (a) Explain different types of data types and give an illustration for each type.

 (b) Explain various I/O console functions by means of illustrations.

(or)

2. (a) Explain how to create and manipulate vectors in R ?

 (b) Explain the following functions with suitable illustrations.

UNIT -II

3. (a) Explain how to create and manipulate matrices in R with suitable illustrations. Also,
 explain various operators applicable on matrices.

 (b) Explain, in detail, the creation and manipulation of data frames.

(or)

4. (a) Explain how to read data from various types of files by means of illustrations. Further,
 explain write.csv(), write.table(), file.choose(), setwd() and getwd() functions with
 suitable illustrations.

(b) Explain the creation and manipulation of lists.

UNIT - III

5. (a) Explain various control statements in R by writing their syntax. Give an illustration in
 each case.

 (b) Write R program to find mean and median of the given sample without using built-in R
 functions.

(or)

6. (a) What are user-defined functions? Explain them in detail with suitable illustrations.

 (b) Write your own R function for two sample t-test.

UNIT – IV

7. (a) Write R-codes for generating samples of size n=1000 from each of the following
 probability distributions and for plotting the density functions for the respective
 distributions. i) Poisson(10) ii) N(10,100) iii) exp(5)

 (b) Write R- function for finding binomial probability and hence write R- code for fitting of
 binomial distribution based on a given frequency data and test for goodness of fit.

(or)

8. (a) Write down the built-in R-syntax for the following tests and explain them.
 i) Kolmogorov –Smirnov test for goodness of fit. ii) Wilcoxon Mann-Whitney two-
 sample U-test iii) Chi-square test for goodness of fit.

 (b) Write R- code for solving the equation 2 6 0xe x using Newton-Raphson method.

UNIT –V

9. (a) Explain the following high-level plotting commands in details i) plot() ii) barplot()
 iii) pie() iv) hist()

 (b) Explain various low-level plotting commands available in R.

(or)

10. (a) Write down the built-in R-syntax for drawing bar chart and Q-Q plot.

 (b) Write down the built-in R-syntax for the following tests and explain them. i) CRD
 analysis ii) RBD analysis.

CONTENTS

S.NO. LESSON PAGES

1. BASIC DATA TYPES AND OPERATORS

1.1 – 1.10

2. VARIABLES AND INPUT AND OUTPUT FUNCTIONS

2.1 – 2.7

3. VECTORS AND GENERATING REGULAR SEQUENCES OF
FUNCTIONS

3.1 – 3.15

4. R MATRICES

4.1 – 4.15

5. R-LISTS

5.1 – 5.11

6. READING AND GETTING DATA INTO R USING FILES

6.1 – 6.7

7. CONTROL STATEMENTS

7.1 – 7.9

8. LOOPING STATEMENTS

8.1 – 8.12

9. R- FUNCTIONS

9.1 – 9.23

10. PROBABILITY DISTRIBUTIONS IN R

10.1 – 10.20

11. STATISTICAL TESTS IN R

11.1– 11.5

12. R-CODES FOR FITTING DISTRIBUTIONS

12.1 – 12.17

13. R-GRAPHICS

13.1 – 13.14

14. R-GRAPHICS

14.1 – 14.16

15. R-GRAPHICS

15.1 – 1.4

LESSON -1

BASIC DATA TYPES AND OPERATORS

OBJECTIVES:

After studying this unit, you should be able to:

 Recognize the significance of data in modern decision-making and computational
processes.

 Students should have a solid understanding of the modes, attributes, and constants, and
manage the R workspace efficiently.

 The student will learn apply arithmetic, relational, logical, assignment, and
miscellaneous operators to perform various computational tasks.

 Develop simple R scripts for data analysis and statistical tasks, utilizing the
fundamental concepts of R programming.

STRUCTURE:

1.1. What and why is R?

1.1.1 Features of R

1.1.2 Applications of R

1.2. Objects

1.3. Modes

1.3.1 Attributes

1.3.2 Comments

1.3.3 Constants

1.4 Basic data types

1.5 Operators

 1.5.1 Arithmetic Operators

 1.5.2 Relational Operators

 1.5.3 Logical Operators

 1.5.4.Assignment Operators

 1.5.5 Miscellaneous Operators

1.6 Conclusion

1.7 Self Assessment Questions

1.8 Further Readings

Center for Distance Education 1.2 Acharya Nagarjuna University

1.1. WHAT AND WHY IS R:

R is a programming language and software environment that assists in the analysis of
statistical data, the representation of images, and the generation of reports. R is a
programming language that was initially developed by Ross Ihaka and Robert Gentleman at
the University of Auckland in New Zealand. The R Development Core Team is currently
expanding the capabilities of R.

The core of R is an interpreted computer language that enables modular programming
through the use of functions, as well as branching and looping. R makes it possible to
integrate with procedures written in languages such as C, C++,.Net, Python, or FORTRAN,
which leads to increased efficiency.

The GNU General Public Licence makes R freely accessible to the public, and pre-
compiled binary copies of the programme are made available for a variety of operating
systems, including Linux, Windows, and Mac Operating Systems.

 R is a piece of free software that is shared under a copy left licence similar to that of
GNU. It is also an official component of the GNU project known as GNU S. Starting from
mid-1997, a central organisation known as the "R Core Team" has had the authority to make
changes to the R source code archive.

1.1.1 Features of R:

R is a powerful programming language and environment primarily used for statistical
computing and data analysis. Here are some key features:

1. Statistical Computing & Analysis

 Provides a wide range of statistical tests (e.g., regression, t-tests, ANOVA).
 Advanced machine learning and modeling capabilities.

2. Data Manipulation & Visualization

 Efficient tools for data wrangling (e.g., dplyr, tidyverse).
 Data visualization with libraries like ggplot2 and lattice.

3. Open-Source & Extensible

 Free to use and supported by a large community.
 Thousands of packages available via CRAN (Comprehensive R Archive Network).

4. Handling Big Data

 Supports large datasets with packages like data.table.
 Can integrate with Hadoop, Spark, and databases.

5. Reproducibility & Reporting

 R Markdown for creating dynamic reports.
 Shiny for interactive web applications.

Statistical Computing Using R 1.3 Basic data types and Operators

6. Integration with Other Languages

 Can call Python, C, C++, Java, and SQL code.
 Works with tools like Jupyter Notebooks.

7. Rich Development Environment

 Supported by IDEs like RStudio and Jupyter.
 Version control integration with Git.

1.1.2 Applications of R:

1. Statistical analysis and making sense of data: At its core, R is the same thing as
statistical research. It comes with all the tools you need to do a wide range of statistical tests,
from simple descriptive statistics to complex regression models. R is great for more than just
numbers. It's also great for showing data visually. ggplot2 and other similar packages make
it easy to make interesting graphs and charts that help you understand large datasets visually.

2. Exploring and cleaning the data: Exploring and cleaning the data are the first steps in
any data analysis process. Because of what it can do, R is a great choice for dealing with
missing values and outliers and checking the quality of the data as a whole before doing more
in-depth analysis. In real life, R's powerful data preparation tools make sure that datasets are
carefully prepared and improved so that insights are correct and reliable.

3. Predictive Modelling and Machine Learning: R has a lot of features for both predictive
modelling and machine learning. It has many methods for regression, classification, and
clustering, which makes it a great language for making models that can predict the future. R's
machine learning features are very useful for real-time tasks like predicting stock prices,
customer behaviour, or disease results, as they help make decisions based on data.

4. Biostatistics and Healthcare: R is a key tool in biostatistics; it is used to look at data from
clinical trials, do epidemiological studies, and help healthcare workers make decisions based
on data. Some of the ways it can be used in healthcare are in genomics, where it is very
helpful for looking at genetic data, finding trends linked to diseases, and making personalized
medicine possible.

5. Finance and Risk Management: Risk modelling, portfolio optimisation, and analyzing
market trends are all things that the financial industry does with R. In financial analytics,
where real-time insights can drive strategic decisions, R's ability to work with big datasets is
very important.

People who want to become data scientists can learn how to use R programming for financial
research and risk management by taking a well-rounded Data Science course.

6. Social Sciences and Market Research: R is used a lot in the social sciences to look at
survey results, social media sentiment, and general opinion. Because it is so flexible,
researchers can use it to learn from very large and different social datasets.

Center for Distance Education 1.4 Acharya Nagarjuna University

7. Environmental Science and Climate Research: R makes a big difference in
environmental science by looking at climate data, guessing what will happen to the
environment, and figuring out how our actions affect environments. Its uses in climate studies
are very important for understanding and solving problems related to the environment. As
worries about the planet's future grow, data scientists are turning to R for environmental
study and climate modelling. This shows how R can be used in the real world to solve
problems.

1.2 OBJECTS:

 The entities that R creates at manipulates are known as objects. These may be
variables, vectors, matrices, arrays of numbers, characteristics, functions are known general
structures or more general structures built from such components.

During an R-section objects are created and stored by name. The R-command objects () or
ls() can be used to display the names of the objects which are currently stored within R. the
collection of objects currently stored is called the work space. We can remove any particulars
objects or object using the following function rm()

Example:

 rm (x),

 rm (mean)

To remove or erase all existing objects rm(list=ls())

1.3 MODES:

In R, data modes and classes define the fundamental attributes and behavior of a data object.
 For example, different modes and classes are handled differently by core functions like
print(), summary(), and plot().

Data Object Modes:

All data in R is an object and all objects have a “mode.” The mode determines what type of
information can be found within the object and how that information is stored. Atomic
“modes” are the basic building blocks for data objects in R. There are 6 basic atomic modes:

Data Mode Storage Example

logical Logical TRUE or FALSE

numeric integer, single or double Floating point real numbers; 3, 0.753

complex Complex 3 + 2i

character character strings in quotes (“) or apostrophes (‘)

function special or built-in do.it <- function(x) {…}

name Symbol any name assigned to an object (e.g. "my.data")

Statistical Computing Using R 1.5 Basic data types and Operators

1.3.1 ATTRIBUTES:

Objects can have attributes. Attributes are part of the object. These include:

 names
 dimnames
 dim
 class
 attributes (contain metadata)

You can also glean other attribute-like information such as length (works on vectors and lists)
or number of characters (for character strings).

1.3.2 COMMENTS:

We can add comments to our code using the # character. It is useful to document our code in
this way so that others (and us the next time we read it) have an easier time following what
the code is doing.

We can also change a variable’s value by assigning it a new value:

weight_kg <- 57.5

weight_kg

[1] 57.5

1.3.3. CONSTANTS:

Constants, as the name suggests, are entities whose value cannot be altered. Basic types of
constant are numeric constants and character constants.

Numeric Constants

All numbers fall under this category. They can be of type integer, double or complex.

It can be checked with the typeof() function.

Numeric constants followed by L are regarded as integer and those followed by i are regarded
as complex.

typeof(5)
[1] "double"
typeof(5L)
[1] "integer"
 typeof(5i)
[1] "complex"

Center for Distance Education 1.6 Acharya Nagarjuna University

1.4 BASIC DATA TYPES:

The simplest of these objects is the vector object and there are six data types of these atomic
vectors, also termed as six classes of vectors. The other R-Objects are built upon the atomic
vectors.

 Numeric:
 Integer:
 Character (String):
 Logical (Boolean):
 Complex
 raw

Numeric:
Decimal values are called numerics in R. It is the default computational data type. If we
assign a decimal value to a variable x as follows, x will be of numeric type.

 x = 10.5 # assign a decimal value
 x # print the value of x
[1] 10.5
class(x) # print the class name of x
[1] "numeric"

Integer:

In order to create an integer variable in R, we invoke the as.integer function. We can be
assured that y is indeed an integer by applying the is.integer function.
 y = as.integer(3)
y # print the value of y
[1] 3
class(y) # print the class name of y
[1] "integer"
is.integer(y) # is y an integer?
[1] TRUE

Incidentally, we can coerce a numeric value into an integer with the
same as.integer function.
as.integer(3.14) # coerce a numeric value
[1] 3

And we can parse a string for decimal values in much the same way.

 as.integer("5.27") # coerce a decimal string
[1] 5

Complex

A complex value in R is defined via the pure imaginary value i.

Statistical Computing Using R 1.7 Basic data types and Operators

z = 1 + 2i # create a complex number

z # print the value of z
[1] 1+2i
class(z) # print the class name of z
[1] "complex"

The following gives an error as −1 is not a complex value.

sqrt(−1) # square root of −1
[1] NaN

Logical:

A logical value is often created via comparison between variables.

x = 1; y = 2 # sample values
z = x > y # is x larger than y?
z # print the logical value
[1] FALSE
class(z) # print the class name of z
[1] "logical"

Standard logical operations are "&" (and), "|" (or), and "!" (negation).
u = TRUE; v = FALSE
u & v # u AND v
[1] FALSE
u | v # u OR v
[1] TRUE

 !u # negation of u
[1] FALSE

Character:

A character object is used to represent string values in R. We convert objects into
character values with the as.character() function:
 x = as.character(3.14)
 x # print the character string
[1] "3.14"
class(x) # print the class name of x
[1] "character"

Two character values can be concatenated with the paste function.
 fname = "Joe"; lname ="Smith"
paste(fname, lname)
[1] "Joe Smith"

Center for Distance Education 1.8 Acharya Nagarjuna University

raw Data

In R, raw data types refer to the raw class, which is used to store raw bytes. It is primarily
used for handling binary data, such as reading and writing files in binary format or dealing
with cryptographic operations.

You can create raw data using the as.raw() function:

Creating a raw vector

raw_vec <- as.raw(c(65, 66, 67)) # ASCII codes for 'A', 'B', 'C'

raw_vec

Output:

[1] 41 42 43

1.5 OPERATORS:

Introduction

R is a powerful programming language widely used for statistical computing and data
analysis. One of the fundamental aspects of R is its use of operators to perform various
computations and logical evaluations. Operators in R can be classified into different
categories, including arithmetic, relational, logical, assignment, and miscellaneous operators.
Understanding these operators is crucial for effectively writing and executing R scripts.

1.5.1 Arithmetic Operators

Arithmetic operators in R are used to perform basic mathematical computations. These
include addition, subtraction, multiplication, division, exponentiation, and modulo operations.
The following table outlines the arithmetic operators in R:

Operator Description Example

+ Addition 5 + 3 results in 8

- Subtraction 10 - 4 results in 6

* Multiplication 6 * 2 results in 12

/ Division 9 / 3 results in 3

^ or ** Exponentiation 2^3 or 2**3 results in 8

%% Modulus (Remainder) 10 %% 3 results in 1

%/% Integer Division 10 %/% 3 results in 3

Statistical Computing Using R 1.9 Basic data types and Operators

1.5.2 Relational Operators

Relational operators in R are used to compare values and return Boolean results (TRUE or
FALSE). These operators are essential for decision-making in programming.

Operator Description Example

== Equal to 5 == 5 results in TRUE

!= Not equal to 5 != 3 results in TRUE

> Greater than 7 > 4 results in TRUE

< Less than 3 < 5 results in TRUE

>= Greater than or equal to 6 >= 6 results in TRUE

<= Less than or equal to 4 <= 5 results in TRUE

1.5. 3 Logical Operators

Logical operators in R are used for evaluating logical expressions and combining multiple
conditions.

Operator Description Usage

& Element wise logical AND operation a&b

| Element wise logical OR operation a|b

! Element wise logical NOT operation !a

&& Operand wise logical AND operation a&&b

|| Operand wise logical OR operation a||b

1.5.4 Assignment Operators

Assignment operators in R are used to assign values to variables. R provides multiple
assignment operators.

Operator Description Example

<- Left assignment x <- 10

-> Right assignment 10 -> x

= Alternative assignment x = 5

Center for Distance Education 1.10 Acharya Nagarjuna University

Operator Description Example

<<- Global assignment (used in functions) x <<- 20

1.5.5 Miscellaneous Operators

Miscellaneous operators in R include operators used for special operations, such as sequence
generation, membership checking, and matrix multiplication.

Operator Description Example

: Sequence generator 1:5 results in 1 2 3 4 5

%in% Membership checking 3 %in% c(1, 2, 3, 4) results in TRUE

%*% Matrix multiplication A %*% B (for matrices A and B)

1.6 SUMMARY:

R is a powerful language for data analysis and visualization, offering rich features and
an extensive ecosystem for statistical computing. Understanding its core concepts, such as
objects, data types, and operators, is essential for efficient programming in R.

1.7 SELF ASSESSMENT QUESTIONS:

1. Explain the difference between a vector and a list in R.
2. Write an R script to demonstrate the use of arithmetic operators.
3. What are attributes in R? Give an example.
4. How do you comment code in R?
5. Discuss the applications of R in different industries.
6. Explain the different modes available in R with examples.
7. Describe logical operators in R with examples.

1.8 SUGGESTED READINGS:

1) Dr. Mark Gardener (2012): Beginning R – The Statistical Programming Language,
Wiley India Pvt Ltd.

2) W. N. Venables and D. M. Smith(2016): An Introduction to R
3) J.P. Lander(2014):R for Everyone, Pearson Publications

4) Garrett Grolemund : Hands-On Programming with R

5) Michael J. Crawley: The R Book

 Dr. SYED JILANI

LESSON -2

VARIABLES AND INPUT AND OUTPUT
FUNCTIONS

OBJECTIVES:

After studying this unit, you should be able to:

 To understanding the basic data types and operators
 To know the concept of Structure and data types and operators
 To acquire knowledge about significance of various data types in R (e.g., numeric,
 character, logical), and understand their role in data manipulation..
 To understand the purpose and objectives of pivotal provisions of the data types and
 operators.

STRUCTURE:

2.1 Introduction

2.2 R Variables

2.2.1 Variable Assignment

 2.2.2 Data Types in R

2.3 Finding variable:

 2.3.1 Deleting Variables

2.4 R I/O Functions

2.4.1 Scan ()

2.4.2 Print()

2.4.3 cat()

2.4.4 format ()

2.5 getwd()

2.5.1 setwd()

2.6 Conclusion

2.7 Self Assessment Questions

2.8 Further Readings

2.1 INTRODUCTION:

A variable in R is a name assigned to a value or an object that can store different types
of data such as numbers, text, or complex structures. Variables are used to store and
manipulate data efficiently in R programming.

Center for Distance Education 2.2 Acharya Nagarjuna University

2.2 R VARIABLES:

2.2.1 Variable Assignment:

There are three different assignment operators. Those are leftwards(<-), rightwards(->) and
equal to(=). Two of them leftward and rightward can be used normally used in functions,
where as the operator equal to is only allowed at the top level(in the complete expression
typed at the command prompt or as one of the sub expressions in a braced list of
expressions). We use the print() or cat()function. This function is used to combine multiple
items.

#Assignment using leftward operator

x<-("operator")

#Assignment using rightward operator

("variable")-> y

#Assignment using equal operator

z=c(1,2,3)

print(x)

print(y)

print(z)

cat("x is ",x,"\n")

cat("y is ",y,"\n")

cat("z is ",z,"\n")

 Output:

[1] "operator"

[1] "variable"

[1] 1 2 3

x is operator

y is variable

z is 1 2 3

2.2.2 Data Types in R:

R supports multiple data types, which are crucial for storing and processing different kinds of
information. The main data types include:

1. Numeric (double and integer): Used for numbers.

Statistical Computing Using R 2.3 Variables and Input…

 num <- 10.5 # Double
int <- as.integer(5) # Integer

2. Character: Used for text strings.

char <- "Hello, R!"

3. Logical: Represents TRUE or FALSE values.

bool <- TRUE

4. Complex: Used for complex numbers.

comp <- 4 + 3i

5. Factor: Used to represent categorical data.

fact <- factor(c("Male", "Female", "Male"))

output:

Numeric (Double) 10.5
Integer 5
Character Hello, R!
Logical TRUE
Complex 4+3i
Factor Male

2.3 FINDING VARIABLE:

When you are running commands in an R commands in an R command prompt, the instance
might get stacked up with lot of variables.

To find all R variables that are live at a point in R command prompt or R script file, ls()is the
command that returns a character vector.

>ls()

[1] "a" "b" "c" "d" "x" "y" "z"

 p=35.4

 w=34

 t=45

>ls()

 [1] "a" "b" "c" "d" "p" "t" "w" "x" "y" "z"

Center for Distance Education 2.4 Acharya Nagarjuna University

2.3.1 Deleting Variables

The rm() function in R is used to remove objects from the environment. It is a powerful tool
for managing memory and ensuring that unnecessary variables do not clutter the workspace.

 Removing a Single Variable

To delete a specific variable, use:

rm(x)

This will remove x from the environment, making it inaccessible.

 Removing Multiple Variables

You can delete multiple variables at once by passing multiple variable names to rm():

rm(y, z)

 Removing All Variables

To clear all variables from the workspace, use:

rm(list = ls())

This removes all objects from the global environment, effectively resetting it.

 Checking if a Variable Exists

After removing a variable, you can check if it still exists using:

exists("x")

If x has been deleted, this function will return FALSE.

 Protecting Variables from Accidental Deletion

If you want to protect certain variables from being deleted, you can selectively remove
others:

rm(list = setdiff(ls(), c("important_var")))

This keeps important_var while deleting all other variables.

2.4 R I/O FUNCTIONS:

2.4.1 Scan():-

scan() can accept a variety of connection functions. It is reads data from a file, a URL or the keyboa
into a vector. It can be embedded in a call to matrix () or array().

Statistical Computing Using R 2.5 Variables and Input…

x<-scan("","int")
1: 32
2: 43
3: 54
4: 67
5:
Read 4 items
> x
[1] "32" "43" "54" "67"

2.4 .2 Print():
This function can be used to display the entire object, and is invoked when an
expression is not assigned to a value. For lists and arrays include subscripting
information.

print(7)
[1] 7

 print(matrix(c(1,2,3,4),ncol=2))

 [,1] [,2]

[1,] 1 3

[2,] 2 4

2.4.3 cat()

cat() converts numerical complex elements in the same way as print().It uses the
minimum field width necessary for each element, rather than the same field
width for all elements. cat() will drop attributes of its inputs. This can write to a
file by passing string to the file argument.

#Example for cat() function

a=23

b=42

cat("The sum of a&b is",a+b,"\n")

cat("The product of a&bis",a*b,"\n")

Output:

The sum of a&b is 65

The product of a&b is 966

2.4.4 Format():

 The function format() allows you to format an R object for printing.
Essentially, format() treats the elements of a vector as character strings using a

Center for Distance Education 2.6 Acharya Nagarjuna University

common format. This is especially useful when printing numbers and quantities
under different formats.

format(13.7)

[1] "13.7"

>format(13.123456)

[1] "13.12346"

2.5 getwd():

R looks for your data file in the default directory. You can find the default directory by
using the getwd() command like so:

getwd()
[1] "C:/Documents and Settings/Administrator/My Documents"
getwd()
[1] "/Users/markgardener"
getwd()
[1] "/home/mark"

2.5.1 setwd()
 If your file is somewhere else you must type its name and location in full. The
location is relative to the default directory; in the preceding example the file was on the
desktop so the command ought to have been:

 data6 = scan(file = 'Desktop/test data.txt')

 The filename and directories are all case sensitive. You can also type in a URL
and link to a file over the Internet directly; once again the full URL is required.
It may be easier to point permanently at a directory so that the files can be loaded simply
by typing their names. You can alter the working directory using the setwd() command:
setwd('pathname')

When using this command, replace the pathname part with the location of your target
directory.
 The location is always relative to the current working directory, so to set to my
Desktop I used the following:

setwd('Desktop')
getwd()
[1] "/Users/markgardener/Desktop"

To step up one level you can type the following:
setwd('..')

You can look at a directory and see which files/folders

2.6 SUMMARY:

Understanding variables, data types, and input/output functions in R is crucial for
efficient programming and data analysis. Mastering these fundamental concepts allows
users to write better scripts, manage data effectively, and interact seamlessly with the R

Statistical Computing Using R 2.7 Variables and Input…

environment. The ability to assign, manipulate, and delete variables, along with
performing input/output operations, forms the backbone of successful data handling in R.

2.7 SELF ASSESSMENT QUESTIONS:

1. Explain the process of assigning values to variables in R.
2. List and describe the basic data types in R.
3. Write the R command to display all variables in the current environment.
4. How can a variable be removed from the workspace in R?
5. Differentiate between print() and cat() functions in R.
6. Demonstrate the use of getwd() and setwd() functions with an example.
7. What is the purpose of the scan() function in R?
8. Explain the format() function with an example.

2.8 SUGGESTED READINGS:

1) Dr. Mark Gardener (2012): Beginning R – The Statistical Programming
Language, Wiley India Pvt Ltd.

2) W. N. Venables and D. M. Smith(2016): An Introduction to R

3) J.P. Lander(2014):R for Everyone, Pearson Publications

4) Garrett Grolemund : Hands-On Programming with R

5) Michael J. Crawley: The R Book

 Dr. SYED JILANI

LESSON -3

VECTORS AND GENERATING REGULAR
SEQUENCES OF FUNCTIONS

OBJECTIVES:

After studying this unit, you should be able to:

 Understand the Concept and Importance of Vectors in R
 Students should have a solid understanding of the fundamentals of R

Programming
 Understand apply logical vectors for indexing and filtering, and handle character

vectors for text data manipulation.
 To understand the purpose and objectives of pivotal provisions of the vectors and

generating regular sequences of functions.

STRUCTURE:

3.1 Introduction

3.2 R vectors

3.3 Generating Regular Sequences

3.4 Logical Vectors

3.5 Character Vectors

3.6 Index Vectors

3.7 Selecting and Modifying Subsets of a Vector

3.8 Manipulating character vectors

3.9 Factors

3.10 Conclusion

3.11 Self Assessment Questions

3.12 Further Readings

3.1 INTRODUCTION:

 Vectors are one of the most fundamental data structures in R. A vector is a sequence

of elements of the same data type. Vectors can hold numeric, integer, character, logical,

or complex values. They are commonly used for performing operations on multiple data

elements simultaneously.

Center for Distance Education 3.2 Acharya Nagarjuna University

3.2 R VECTORS

3.2.1 Creating Vectors
When you want to create vector with more than one element, you should use c()

function which means to combine the elements into a vector.

Create a vector.
apple <- c('red','green',"yellow")
print(apple)

Get the class of the vector.
print(class(apple))
When we execute the above code, it produces the following result:

[1] "red" "green" "yellow"
[1] character"

3.2.2vector Assignment

A vector is a basic data structure in R. It is a sequence of elements of the same type. Vectors

are the most common data type in R and are used extensively in data analysis and statistical

computations.

Assigning a character vector
character_vector <- c("apple", "banana", "cherry")
character_vector

Output:

[1] "apple" "banana" "cherry"

3.2.3 Manipulating Vectors

Vectors can be modified by adding or removing elements:

vec <- c(1, 2, 3)
vec <- c(vec, 4, 5)
vec

Output:

[1] 1 2 3 4 5

3.2.4 Arithmetic Operations on Vectors
Two vectors of same length can be added, subtracted, multiplied or divided giving the

result as a vector output.

Statistical Computing Using R 3.3 Vectors and Generating…

Create two vectors.

v1 <- c(3,8,4,5,0,11)

v2 <- c(4,11,0,8,1,2)

Vector addition.

add.result <- v1+v2

print(add.result)

Vector substraction.

sub.result <- v1-v2

print(sub.result)

Vector multiplication.

multi.result <- v1*v2

print(multi.result)

Vector division.

divi.result <- v1/v2

print(divi.result)

When we execute the above code, it produces the following result:

[1] 7 19 4 13 1 13

[1] -1 -3 4 -3 -1 9

[1] 12 88 0 40 0 22

[1] 0.7500000 0.7272727 Inf 0.6250000 0.0000000 5.5000000

3.3 GENERATING REGULAR SEQUENCES:

Regular sequences are commonly used in R for generating sequences of numbers with

a specific pattern. These sequences are often used in data manipulation, indexing, and

simulation tasks. R provides several functions to generate regular sequences efficiently.

3.3.1 . seq() Function

The seq() function is the primary function in R to generate sequences. It allows creating

sequences with customized steps, lengths, and patterns.

Center for Distance Education 3.4 Acharya Nagarjuna University

Syntax:

seq(from, to, by, length.out, along.with)

 from: Starting value of the sequence.

 to: Ending value of the sequence.

 by: Increment between sequence values.

 length.out: Desired length of the sequence.

 along.with: Takes the length of an existing object to define the sequence.

Examples:

Sequence from 1 to 10

seq(1, 10)

Sequence from 1 to 10 with a step of 2

seq(1, 10, by = 2)

Sequence from 1 to 10 with exactly 5 elements

seq(1, 10, length.out = 5)

Sequence along the length of another vector

seq(along.with = c(3, 5, 7, 9))

Output:

[1] 1 2 3 4 5 6 7 8 9 10

[1] 1 3 5 7 9

[1] 1.00 3.25 5.50 7.75 10.00

[1] 1 2 3 4

3.3.2 . Colon Operator

The colon operator: is a shorthand way to create a sequence of integers with a step of 1.

Syntax:

start:end

Statistical Computing Using R 3.5 Vectors and Generating…

Examples:

Sequence from 1 to 10

1:10

Sequence from 5 to 1

5:1

Output:

[1] 1 2 3 4 5 6 7 8 9 10

[1] 5 4 3 2 1

3.3.3 . rep() Function

The rep() function is used to replicate the values in a vector.

Syntax:

rep(x, times, each, length.out)

 x: The values to replicate.

times: Number of times to replicate the entire vector.

each: Number of times to replicate each element.

length.out: Desired length of the result.

Examples:

Replicate the vector 1, 2, 3 two times

rep(c(1, 2, 3), times = 2)

Replicate each element of the vector 1, 2, 3 two times

rep(c(1, 2, 3), each = 2)

Replicate the vector 1, 2, 3 to a specified length of 5

rep(c(1, 2, 3), length.out = 5)

Center for Distance Education 3.6 Acharya Nagarjuna University

Output:

[1] 1 2 3 1 2 3

[1] 1 1 2 2 3 3

[1] 1 2 3 1 2

3.4 LOGICAL VECTORS:

Logical vectors are vectors that contain only TRUE, FALSE, or NA values. They are often

used in conditions, indexing, and logical operations.

Syntax:

c(TRUE, FALSE, NA)

Examples:

Creating a logical vector

logical_vector <- c(TRUE, FALSE, TRUE, NA)

logical_vector

Using logical vectors for indexing

numeric_vector <- c(10, 20, 30, 40)

numeric_vector[logical_vector]

Output:
[1] TRUE FALSE TRUE NA

[1] 10 30

3.5 CHARACTER VECTORS:

Character vectors are vectors that contain character strings. They are often used to represent

names, labels, and categorical data.

Syntax:

c("string1", "string2", "string3")

Statistical Computing Using R 3.7 Vectors and Generating…

Examples:

Creating a character vector

char_vector <- c("apple", "banana", "cherry")

char_vector

Accessing elements of a character vector

char_vector[2]

Output:

[1] "apple" "banana" "cherry"

[1] "banana"

names_vec <- c("Alice", "Bob", "Charlie")

names_vec

Output

[1] "Alice" "Bob" "Charlie"

3.6 INDEX VECTORS:

Index vectors are used to select elements from a vector based on their positions. They

can be numeric, logical, or character vectors.

Syntax:

vector[index]

Examples:

vec <- c(10, 20, 30, 40, 50)

vec[2]

vec[c(1, 3, 5)]

Center for Distance Education 3.8 Acharya Nagarjuna University

Output

[1] 20

[1] 10 30 50

3.7 SELECTING AND MODIFYING SUBSETS OF A VECTOR:

Selecting and modifying subsets of a vector is a common task in R, which allows users to

extract or change parts of a vector.

Syntax:

vector[index] <- value

Example:1

Selecting a subset

vec <- c(1, 2, 3, 4, 5)

subset <- vec[2:4]

subset

Modifying a subset

vec[2:4] <- c(10, 20, 30)

vec

Output:

[1] 2 3 4

[1] 1 10 20 30 5

Example:2

vec <- c(5, 10, 15, 20, 25)

vec[vec > 10] <- 100

vec

Statistical Computing Using R 3.9 Vectors and Generating…

Output

[1] 5 10 100 100 100

3.8 MANIPULATING CHARACTER VECTORS:

Character vectors in R can be manipulated using various functions. Some key functions

include strsplit(), paste(), grep(), and gsub().

3.8.1 strsplit() Function

The strsplit() function splits character strings into substrings based on a specified delimiter.

Syntax:

strsplit(x, split)

Example:

text <- "apple,banana,grape"
split_text <- strsplit(text, ",")
print(split_text)

Output:

[[1]]
[1] "apple" "banana" "grape"

3.8.2 paste () Function

The paste() function concatenates character vectors.

Syntax:

paste(..., sep = " ", collapse = NULL)

Example:

words <- c("Hello", "World")

joined_text <- paste(words, collapse = " ")

print(joined_text)

Center for Distance Education 3.10 Acharya Nagarjuna University

Output:

[1] "Hello World"

3.8.3 grep() Function

The grep() function searches for patterns in a character vector and returns the matching

indices.

Syntax:

grep(pattern, x, ignore.case = FALSE, value = FALSE)

Example:

text_vector <- c("apple", "banana", "cherry")

match_index <- grep("ban", text_vector)

print(match_index)

Output:

[1] 2

3.8.4 gsub() Function

The gsub() function replaces all occurrences of a pattern in a character string.

Syntax:

gsub(pattern, replacement, x)

Example:

text <- "Hello, World!"

new_text <- gsub("World", "R", text)

print(new_text)

Statistical Computing Using R 3.11 Vectors and Generating…

Output:

[1] "Hello, R!"

3.9 FACTORS:

Factors are the data objects which are used to categorize the data and store it as levels.

They can store both strings and integers. They are useful in the columns which have a limited

number of unique values. Like "Male, "Female" and True, False etc. They are useful in data

analysis for statistical modeling.

Factors are created using the factor () function by taking a vector as input.

Example

Create a vector as input.

data<c("East","West","East","North","North","East","West", "West","West","East","North")

print(data)

print(is.factor(data))

Apply the factor function.

factor_data <- factor(data)

print(factor_data)

print(is.factor(factor_data))

When we execute the above code, it produces the following result:

[1] "East" "West" "East" "North" "North" "East" "West" "West" "West"

"East" "North"

[1] FALSE

[1] East West East North North East West West West East North

Levels: East North West

[1] TRUE

Center for Distance Education 3.12 Acharya Nagarjuna University

3.9.1 Factors in Data Frame

On creating any data frame with a column of text data, R treats the text column as

categorical data and creates factors on it.

Create the vectors for data frame.

height <- c(132,151,162,139,166,147,122)

weight <- c(48,49,66,53,67,52,40)

gender <- c("male","male","female","female","male","female","male")

Create the data frame.

input_data <- data.frame(height,weight,gender)

print(input_data)

Test if the gender column is a factor.

print(is.factor(input_data$gender))

Print the gender column so see the levels.

print(input_data$gender)

When we execute the above code, it produces the following result:

 height weight gender

1 132 48 male

2 151 49 male

3 162 66 female

4 139 53 female

5 166 67 male

6 147 52 female

7 122 40 male

Statistical Computing Using R 3.13 Vectors and Generating…

[1] TRUE

[1] male male female female male female male

Levels: female male

Changing the Order of Levels

The order of the levels in a factor can be changed by applying the factor function again

with new order of the levels.

data <-

c("East","West","East","North","North","East","West","West","West","East","North")

Create the factors

factor_data <- factor(data)

print(factor_data)

Apply the factor function with required order of the level.

new_order_data <- factor(factor_data,levels = c("East","West","North"))

print(new_order_data)

When we execute the above code, it produces the following result:

[1] East West East North North East West West West East North

Levels: East North West

[1] East West East North North East West West West East North

Levels: East West North

3.9.2 Generating Factor Levels

We can generate factor levels by using the gl() function. It takes two integers as input

which indicates how many levels and how many times each level.

Syntax

Center for Distance Education 3.14 Acharya Nagarjuna University

gl(n, k, labels)

Following is the description of the parameters used:

 n is a integer giving the number of levels.

 k is a integer giving the number of replications.

 labels is a vector of labels for the resulting factor levels.

Example

v <- gl(3, 4, labels = c("Tampa", "Seattle","Boston"))

print(v)

When we execute the above code, it produces the following result:

Tampa Tampa Tampa Tampa Seattle Seattle Seattle Seattle Boston

[10] Boston Boston Boston

Levels: Tampa Seattle Boston

3.10 SUMMARY:

Vectors are fundamental data structures in R that store elements of the same type. They can

be created using c(), manipulated using indexing, and operated on using vectorized

arithmetic. Logical, character, and factor vectors offer additional flexibility for data handling.

Understanding these concepts is crucial for data analysis and manipulation in R.

3.11 SELF ASSESSMENT QUESTIONS:

1. Define a vector in R and explain how it is created.

2. What are the different ways to generate sequences in R?

3. Explain how to modify subsets of a vector with examples.

4. Differentiate between grep() and gsub() functions.

5. How do factors help in categorical data representation?

6. Write R code to create a numeric vector, perform arithmetic operations, and extract a
subset.

7. Explain the use of paste() function with an example.

8. How do logical vectors work in R? Provide an example.

Statistical Computing Using R 3.15 Vectors and Generating…

9. Describe the importance of factors in data analysis.

10. Write an R program to split a character string using strsplit() and modify it using gsub().

3.12 SUGGESTED READINGS:

1) Dr. Mark Gardener (2012): Beginning R – The Statistical Programming Language,

Wiley India Pvt Ltd.

2) W. N. Venables and D. M. Smith(2016): An Introduction to R

3) J.P. Lander(2014):R for Everyone, Pearson Publications

4) Garrett Grolemund : Hands-On Programming with R

5) Michael J. Crawley: The R Book

Dr. SYED JILANI

LESSON 4

R MATRICES

OBJECTIVES:

After studying this unit, you should be able to:
 Understand the importance of matrices
 Students should have a solid understanding about the concept of matrices
 The student will learn apply arithmetic, relational, logical, assignment, and miscellaneous

operators to perform various computational tasks.
 Further, the student will be familiar with graphical facilities for data analysis available in

R.

STRUCTURE

4.1 Introduction

4.2 Creating Matrices

4.3 Arithmetic Operators On Matrices

4.4 Accessing Elements of a matrix

4.5 Matrix Computations

 4.5.1 Creating a Matrix
 4.5. 2. Accessing Elements
 4.5. 3. Matrix Operations
 4.5.4. Combining Matrices
 4.5. 5. Diagonal Matrix
 4.5.6. Extract Diagonal Elements
 4.5.7. Identity Matrix
 4.5.8. Apply Functions to Rows/Columns

4.6 Forming Partitioned Matrices

 4.6.1. Partitioned Matrices
 4.6.2. cbind()
 4.6.3. rbind()
 4.6.4. Combining rbind() and cbind() Together

4.7 Conclusion

4.8 Self Assessment Questions

4.9 Further Readings

4.1 INTRODUCTION:

Matrices are the R objects in which the elements are arranged in a two-dimensional
rectangular layout. They contain elements of the same atomic types. Though we can create a
matrix containing only characters or only logical values, they are not of much use. We use
matrices containing numeric elements to be used in mathematical calculations. A Matrix is
created using the matrix() function.

Center for Distance Education 4.2 Acharya Nagarjuna University

Syntax

The basic syntax for creating a matrix in R is:

matrix(data, nrow, ncol, byrow, dimnames)

Following is the description of the parameters used:

 Data is the input vector which becomes the data elements of the matrix.
 nrow is the number of rows to be created.
 ncol is the number of columns to be created.
 byrow is a logical clue. If TRUE then the input vector elements are arranged by row.
 dimname is the names assigned to the rows and columns.

Example:

Create a matrix taking a vector of numbers as input
Elements are arranged sequentially by row.
M <- matrix(c(3:14), nrow=4, byrow=TRUE)
print(M)
Elements are arranged sequentially by column.
N <- matrix(c(3:14), nrow=4, byrow=FALSE)
print(N)
Define the column and row names.
rownames = c("row1", "row2", "row3", "row4")

colnames = c("col1", "col2", "col3")
P<-matrix(c(3:14), nrow=4, byrow=TRUE, dimnames=list(rownames, colnames))
print(P)

#When we execute the above code, it produces the following

output:
[,1] [,2] [,3]
[1,] 3 4 5
[2,] 6 7 8
[3,] 9 10 11
[4,]12 13 14

 [,1] [,2] [,3]
[1,] 3 7 11
[2,] 4 8 12
[3,] 5 9 13
[4,] 6 10 14

 col1 col2 col3
row1 3 4 5
row2 6 7 8
row3 9 10 11
row4 12 13 14

Statistical Computing Using R 4.3 R matrices

4.2 CREATING MATRICES:

Matrix can be created using the matrix() function.

Dimension of the matrix can be defined by passing appropriate value for
arguments nrow and ncol.

Providing value for both dimension is not necessary. If one of the dimension is provided, the
other is inferred from length of the data.

>matrix(1:9, nrow = 3, ncol = 3)
 [,1] [,2] [,3]
[1,] 1 4 7
[2,] 2 5 8
[3,] 3 6 9
> # same result is obtained by providing only one dimension
>matrix(1:9, nrow = 3)
 [,1] [,2] [,3]
[1,] 1 4 7
[2,] 2 5 8
[3,] 3 6 9

We can see that the matrix is filled column-wise. This can be reversed to row-wise filling by
passing TRUE to the argument byrow.

>matrix(1:9, nrow=3, byrow=TRUE) # fill matrix row-wise
 [,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
[3,] 7 8 9

In all cases, however, a matrix is stored in column-major order internally as we will
see in the subsequent sections.

It is possible to name the rows and columns of matrix during creation by passing a 2 element
list to the argument dimnames.

> x <- matrix(1:9, nrow = 3, dimnames = list(c("X","Y","Z"), c("A","B","C")))
> x
A B C
X 1 4 7
Y 2 5 8
Z 3 6 9

These names can be accessed or changed with two helpful
functions colnames() and rownames().

>colnames(x)
[1] "A" "B" "C"

Center for Distance Education 4.4 Acharya Nagarjuna University

>rownames(x)

[1] "X" "Y" "Z"

> # It is also possible to change names
>colnames(x) <- c("C1","C2","C3")
>rownames(x) <- c("R1","R2","R3")
> x
 C1 C2 C3
R1 1 4 7
R2 2 5 8
R3 3 6 9

Another way of creating a matrix is by using functions cbind() and rbind() as in column bind
and row bind.

>cbind(c(1,2,3),c(4,5,6))
 [,1] [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 6

>rbind(c(1,2,3),c(4,5,6))
 [,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6

Finally, you can also create a matrix from a vector by setting its dimension using dim().

> x <- c(1,2,3,4,5,6)
> x
[1] 1 2 3 4 5 6
> class(x)

[1] "numeric"
> dim(x) <- c(2,3)
> x
 [,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

> class(x)
[1] "matrix"

4.3 ACCESSING ELEMENTS OF A MATRIX:

Elements of a matrix can be accessed by using the column and row index of the element.

Statistical Computing Using R 4.5 R matrices

We consider the matrix P above to find the specific elements below.

Define the column and row names.
rownames = c("row1", "row2", "row3", "row4")
colnames = c("col1", "col2", "col3")

Create the matrix.
P <- matrix(c(3:14), nrow=4, byrow=TRUE, dimnames=list(rownames, colnames))

Access the element at 3rd column and 1st row.
print(P[1,3])

Access the element at 2nd column and 4th row.
print(P[4,2])

Access only the 2nd row.
print(P[2,])

Access only the 3rd column.
print(P[,3])

When we execute the above code, it produces the following result:
[1] 5
[1] 13
col1 col2 col3
 6 7 8
row1 row2 row3 row4

5 8 11 14

4.4 MATRIX COMPUTATIONS:

Various mathematical operations are performed on the matrices using the R operators.
The result of the operation is also a matrix.
The dimensions (number of rows and columns) should be same for the matrices involved
in the operation.

Matrix Addition & Subtraction
Create two 2x3 matrices.

matrix1 <- matrix(c(3, 9, -1, 4, 2, 6), nrow=2)
print(matrix1)
matrix2 <- matrix(c(5, 2, 0, 9, 3, 4), nrow=2)
print(matrix2)

Add the matrices.
result <- matrix1 + matrix2
cat("Result of addition","\n")
print(result)
Subtract the matrices
result <- matrix1 - matrix2

Center for Distance Education 4.6 Acharya Nagarjuna University

cat("Result of subtraction","\n")

print(result)

When we execute the above code, it produces the following result:
[,1] [,2] [,3]
[1,] 3 -1 2
[2,] 9 4 6
[,1] [,2] [,3]
[1,] 5 0 3
[2,] 2 9 4

Result of addition
[,1] [,2] [,3]
[1,] 8 -1 5
[2,] 11 13 10

Result of subtraction
[,1] [,2] [,3]
[1,] -2 -1 -1
[2,] 7 -5 2

Matrix Multiplication & Division
Create two 2x3 matrices.
matrix1 <- matrix(c(3, 9, -1, 4, 2, 6), nrow=2)
print(matrix1)
matrix2 <- matrix(c(5, 2, 0, 9, 3, 4), nrow=2)
print(matrix2)
Multiply the matrices.
result <- matrix1 * matrix2
cat("Result of multiplication","\n")
print(result)
Divide the matrices
result <- matrix1 / matrix2
cat("Result of division","\n")
print(result)
When we execute the above code, it produces the following result:

[,1] [,2] [,3]
[1,] 3 -1 2
[2,] 9 4 6
[,1] [,2] [,3]
[1,] 5 0 3
[2,] 2 9 4
Result of multiplication
[,1] [,2] [,3]
[1,] 15 0 6
[2,] 18 36 24
Result of division
[,1] [,2] [,3]
[1,] 0.6 -Inf 0.6666667

Statistical Computing Using R 4.7 R matrices

[2,] 4.5 0.4444444 1.5000000

4.5 MATRIX FACILITIES:

In R programming, matrices are a fundamental data structure used for mathematical and
statistical computations. R provides a wide range of matrix facilities to create, manipulate,
and perform operations on matrices efficiently. Below are some key matrix facilities in R,
explained with examples:

4.5.1 Creating a Matrix

The matrix() function is commonly used to create matrices in R.

Create a 3x3 matrix
A <- matrix(c(1, 2, 3, 4, 5, 6, 7, 8, 9), nrow = 3, ncol = 3)
print(A)

Output:
 [,1] [,2] [,3]
[1,] 1 4 7
[2,] 2 5 8
[3,] 3 6 9

By default, R fills the matrix column-wise.

4.5. 2. Accessing Elements

You can access specific elements, rows, or columns.
Access element in 2nd row, 3rd column
A[2, 3]
Access entire 1st row
A[1,]
Access entire 2nd column
A[, 2]

Output:
 [1] 8
[1] 1 4 7
[1] 4 5 6

4.5. 3. Matrix Operations

(a) Addition & Subtraction

B <- matrix(1:9, nrow = 3)

Matrix Addition
C <- A + B
Matrix Subtraction
D <- A - B

Center for Distance Education 4.8 Acharya Nagarjuna University

print(C)
print(D)

Output:
 [,1] [,2] [,3]

[1,] 2 8 14

[2,] 4 10 16

[3,] 6 12 18

 [,1] [,2] [,3]

[1,] 0 0 0

[2,] 0 0 0

[3,] 0 0 0

(b) Matrix Multiplication

(i) Element-wise Multiplication (*)
E <- A * B
print(E)

Output:

 [,1] [,2] [,3]
[1,] 1 16 49
[2,] 4 25 64
[3,] 9 36 81

(ii) Matrix Product (%*%)
F <- A %*% B
print(F)

Output:

 [,1] [,2] [,3]

[1,] 30 66 102

[2,] 36 81 126

[3,] 42 96 150

(c) Transpose of a Matrix
t_A <- t(A)
print(t_A)

Output:
 [,1] [,2] [,3]

Statistical Computing Using R 4.9 R matrices

[1,] 1 2 3
[2,] 4 5 6
[3,] 7 8 9

(d) Determinant of a Matrix
det_A <- det(A)
print(det_A)

Output:
 [1] 0

4.5.4. Combining Matrices

(a) Row Binding
A_new <- rbind(A, c(10, 11, 12))
print(A_new)

Output:
 [,1] [,2] [,3]
[1,] 1 4 7
[2,] 2 5 8
[3,] 3 6 9
[4,] 10 11 12

(b) Column Binding
B_new <- cbind(A, c(10, 11, 12))
print(B_new)

Output:

 [,1] [,2] [,3] [,4]

[1,] 1 4 7 10

[2,] 2 5 8 11

[3,] 3 6 9 12

4.5.5. Diagonal Matrix
diag_matrix <- diag(c(1, 2, 3))
print(diag_matrix)

Output:

 [,1] [,2] [,3]

[1,] 1 0 0

[2,] 0 2 0

[3,] 0 0 3

4.5.6. Extract Diagonal Elements
diag_elements <- diag(A)

Center for Distance Education 4.10 Acharya Nagarjuna University

print(diag_elements)

Output:
[1] 1 5 9

4.5.7. Identity Matrix
identity_matrix <- diag(3)
print(identity_matrix)

Output:
 [,1] [,2] [,3]

[1,] 1 0 0

[2,] 0 1 0

[3,] 0 0 1

4.5.8. Apply Functions to Rows/Columns

(a) Row Sums
row_sums <- rowSums(A)
print(row_sums)

Output:

[1] 12 15 18

(b) Column Means

col_means <- colMeans(A)
print(col_means)

Output:
[1] 2 5 8

(c) Using apply()

Sum of each row
apply(A, 1, sum)

Mean of each column
apply(A, 2, mean)

Output:

[1] 12 15 18

[1] 2 5 8

Statistical Computing Using R 4.11 R matrices

4.5. 9. Checking Matrix Dimensions
dim(A)
nrow(A)
ncol(A)

Output:

[1] 3 3

[1] 3

[1] 3

4.5.10. Reshaping a Matrix
reshape_A <- matrix(A, nrow = 1)
print(reshape_A)

Output:

 [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]

[1,] 1 2 3 4 5 6 7 8 9

Summary Table

Facility
R Function /
Operator

 Description

Matrix Creation matrix() Create a matrix

Access Elements []
Access specific elements, rows,
columns

Addition/Subtraction +, - Element-wise addition and subtraction

Element-wise Multiplication * Element-wise multiplication

Matrix Product %*% Matrix multiplication

Transpose t() Transpose of a matrix

Determinant det() Determinant of a square matrix

Inverse solve() Inverse of a square matrix

Combine Rows/Columns rbind(), cbind() Bind matrices by rows or columns

Diagonal Matrix diag() Create a diagonal matrix

Row/Column Sums and
Means

rowSums(),
colMeans()

Compute sums and means

Apply Function to Rows/Cols apply()
Apply a function across rows or
columns

Center for Distance Education 4.12 Acharya Nagarjuna University

Facility
R Function /
Operator

 Description

Matrix Dimensions dim(), nrow(), ncol() Get matrix dimensions

These matrix facilities allow R users to perform efficient data manipulation and mathematical
computations, making matrices a powerful tool in data analysis, statistical modeling, and
machine learning.

4.6 FORMING PARTITIONED MATRICES:

4.6.1. Partitioned Matrices

A partitioned matrix is a matrix that is divided into smaller sub-matrices or blocks. This is
often done to simplify complex matrix operations or organize data efficiently.

Simple Example in R:
Defining sub-matrices (blocks)
A11 <- matrix(c(1, 2, 3, 4), nrow = 2)
A12 <- matrix(c(5, 6), nrow = 2)
A21 <- matrix(c(7, 8), nrow = 1)
A22 <- matrix(c(9), nrow = 1)

Combining the blocks to form a partitioned matrix
A_upper <- cbind(A11, A12) # Combining A11 and A12 horizontally
A_lower <- cbind(A21, A22) # Combining A21 and A22 horizontally

Partitioned_Matrix <- rbind(A_upper, A_lower) # Combining the two rows vertically

print(Partitioned_Matrix)

Output:
 [,1] [,2] [,3] [,4]
[1,] 1 3 5 6
[2,] 2 4 5 6
[3,] 7 8 9 9

4.6.2. cbind()

The cbind() function in R is used to combine two or more matrices, vectors, or data
frames by columns.

Syntax:

cbind(matrix1, matrix2, ...)

Example 1: Combining Matrices by Columns
A <- matrix(1:4, nrow = 2)

Statistical Computing Using R 4.13 R matrices

B <- matrix(5:8, nrow = 2)

C <- cbind(A, B)
print(C)

Output:
 [,1] [,2] [,3] [,4]
[1,] 1 3 5 7
[2,] 2 4 6 8

Each matrix is attached column-wise.

Example 2: Combining Vectors by Columns
v1 <- c(1, 2, 3)
v2 <- c(4, 5, 6)

C <- cbind(v1, v2)
print(C)

Output:
 v1 v2
[1,] 1 4
[2,] 2 5
[3,] 3 6

4.6.3. rbind() – Row Binding

The rbind() function in R is used to combine two or more matrices, vectors, or data
frames by rows.

Syntax:

rbind(matrix1, matrix2, ...)

Example 1: Combining Matrices by Rows
A <- matrix(1:4, nrow = 2)
B <- matrix(5:8, nrow = 2)

D <- rbind(A, B)
print(D)

Output:
 [,1] [,2]
[1,] 1 3
[2,] 2 4
[3,] 5 7
[4,] 6 8

Each matrix is attached row-wise.

Center for Distance Education 4.14 Acharya Nagarjuna University

Example 2: Combining Vectors by Rows
v1 <- c(1, 2, 3)
v2 <- c(4, 5, 6)

D <- rbind(v1, v2)
print(D)

Output:
 [,1] [,2] [,3]
v1 1 2 3
v2 4 5 6

4.6.4. Combining rbind() and cbind() Together

Sometimes, you may need to use both functions to form partitioned matrices.

Example:
A1 <- matrix(c(1, 2, 3, 4), nrow = 2)
A2 <- matrix(c(5, 6), nrow = 2)
B1 <- matrix(c(7, 8), nrow = 1)
B2 <- matrix(c(9), nrow = 1)

Upper <- cbind(A1, A2)
Lower <- cbind(B1, B2)

Partitioned_Matrix <- rbind(Upper, Lower)

print(Partitioned_Matrix)

Key Points to Remember:

Function Purpose Example Use Case

cbind() Combine matrices/vectors by columns
Add new features (columns) to

data

rbind() Combine matrices/vectors by rows
Add new observations (rows)

to data

Partitioned
Matrix

Divide a matrix into blocks for efficient
computation

Handling large data blocks in
sections

4.7 SUMMARY:

Matrices are fundamental data structures used in mathematical computations and data
analysis. Understanding matrix creation, manipulation, and operations is essential for
working efficiently with numerical data. Functions like matrix(), cbind(), rbind(), diag(), and
apply() simplify matrix handling and computations.

Statistical Computing Using R 4.15 R matrices

4.8 SELF ASSESSMENT QUESTIONS:

1. What is a matrix in R? How is it different from a data frame?
2. What is the difference between cbind() and rbind()?
3. How do you create an identity matrix in R?
4. Create a 3x3 matrix with numbers from 1 to 9, and:

a) Extract the second row.
b) Find the transpose of the matrix.
c) Extract the diagonal elements.

5. Given two matrices A and B of the same dimension, perform element-wise addition,
multiplication, and matrix multiplication.

6. Create a diagonal matrix with values (2, 4, 6) along the diagonal.
7. Use the apply() function to compute the sum of each row and the mean of each

column of a matrix.
8. Combine two matrices both row-wise and column-wise.

4.9 SUGGESTED READINGS:

1) Dr. Mark Gardener (2012): Beginning R – The Statistical Programming Language,
Wiley India Pvt Ltd.

2) W. N. Venables and D. M. Smith(2016): An Introduction to R

3) J.P. Lander(2014):R for Everyone, Pearson Publications

4) Garrett Grolemund : Hands-On Programming with R

5) Michael J. Crawley: The R Book

 Dr. SYED JILANI

LESSON 5

R-LISTS

OBJECTIVES:

After studying this unit, you should be able to:
 Understand the importance of Lists
 Students should have a solid understanding about the concept of Lists
 Further, the student will be familiar with data frames.

STRUCTURE

5.1 Creating a List

5.2 Naming List Elements

5.3 Accessing List Elements

5.4 Manipulating List Elements

5.5 Merging Lists

5.6 Converting List to Vector

5.7 Data Frames

 5.7.1 Create Data Frame

5.8 Extract Data from Data Frame

 5.8.1 Expand Data Frame
 5.8.2 Add Row

5.9 Attach () data Frames

5.10 Conclusion

5.11 Self Assessment Questions

5.12 Further Readings

5.1 CREATING A LIST:

Lists are the R objects which contain elements of different types like - numbers, strings,
vectors and another list inside it. A list can also contain a matrix or a function as its elements.
List is created using list() function.

Following is an example to create a list containing strings, numbers, vectors and a logical
values
Create a list containing strings, numbers, vectors and a logical values.
list_data <- list("Red", "Green", c(21,32,11), TRUE, 51.23, 119.1)
print(list_data)
When we execute the above code, it produces the following result:
[[1]]
[1] "Red"
[[2]]

Center for Distance Education 5.2 Acharya Nagarjuna University

[1] "Green"
[[3]]
[1] 21 32 11
[[4]]
[1] TRUE
[[5]]
[1] 51.23
[[6]]
[1] 119.1

5.2 NAMING LIST ELEMENTS:

The list elements can be given names and they can be accessed using these names.
Create a list containing a vector, a matrix and a list.
list_data <- list(c("Jan","Feb","Mar"), matrix(c(3,9,5,1,-2,8), nrow=2),
list("green",12.3))
Give names to the elements in the list.
names(list_data) <- c("1st Quarter", "A_Matrix", "A Inner list")
Show the list.
print(list_data)
When we execute the above code, it produces the following result:
$`1st_Quarter`
[1] "Jan" "Feb" "Mar"
$A_Matrix
[,1] [,2] [,3]
[1,] 3 5 -2
[2,] 9 1 8
$A_Inner_list
$A_Inner_list[[1]]
[1] "green"
$A_Inner_list[[2]]
[1] 12.3

5.3 ACCESSING LIST ELEMENTS:

Elements of the list can be accessed by the index of the element in the list. In case of
named lists it can also be accessed using the names.
We continue to use the list in the above example:

Create a list containing a vector, a matrix and a list.
list_data <- list(c("Jan","Feb","Mar"), matrix(c(3,9,5,1,-2,8), nrow=2),
list("green",12.3))

Give names to the elements in the list.
names(list_data) <- c("1st Quarter", "A_Matrix", "A Inner list")
Access the first element of the list.
print(list_data[1])
Access the thrid element. As it is also a list, all its elements will be
printed.
print(list_data[3])

Statistical Computing Using R 5.3 R-List

Access the list element using the name of the element.
print(list_data$A_Matrix)
When we execute the above code, it produces the following result:
$`1st_Quarter`
[1] "Jan" "Feb" "Mar"
$A_Inner_list
$A_Inner_list[[1]]
[1] "green"
$A_Inner_list[[2]]
[1] 12.3
[,1] [,2] [,3]
[1,] 3 5 -2
[2,] 9 1 8

5.4 MANIPULATING LIST ELEMENTS:

We can add, delete and update list elements as shown below. We can add and delete
elements only at the end of a list. But we can update any element.
Create a list containing a vector, a matrix and a list.

list_data <- list(c("Jan","Feb","Mar"), matrix(c(3,9,5,1,-2,8), nrow=2),
list("green",12.3))
Give names to the elements in the list.
names(list_data) <- c("1st Quarter", "A_Matrix", "A Inner list")
Add element at the end of the list.
list_data[4] <- "New element"
print(list_data[4])
Remove the last element.
list_data[4] <- NULL
Print the 4th Element.
print(list_data[4])
Update the 3rd Element.
list_data[3] <- "updated element"
print(list_data[3])
When we execute the above code, it produces the following result:
[[1]]
[1] "New element"
$
NULL
$`A Inner list`
[1] "updated element"

5.5 MERGING LISTS:

You can merge many lists into one list by placing all the lists inside one list() function.
Create two lists.
list1 <- list(1,2,3)
list2 <- list("Sun","Mon","Tue")
Merge the two lists.
merged.list <- c(list1,list2)

Center for Distance Education 5.4 Acharya Nagarjuna University

Print the merged list.
print(merged.list)
When we execute the above code, it produces the following result :
[[1]]
[1] 1
[[2]]
[1] 2
[[3]]
[1] 3
[[4]]
[1] "Sun"
[[5]]
[1] "Mon"
[[6]]
[1] "Tue"

5.6 CONVERTING LIST TO VECTOR:

A list can be converted to a vector so that the elements of the vector can be used for further
manipulation. All the arithmetic operations on vectors can be applied after the list is
converted into vectors. To do this conversion, we use the unlist() function. It takes the
list as input and produces a vector.

Create lists.
list1 <- list(1:5)
print(list1)
list2 <-list(10:14)
print(list2)
Convert the lists to vectors.
v1 <- unlist(list1)
v2 <- unlist(list2)
R Programming
59
print(v1)
print(v2)
Now add the vectors
result <- v1+v2
print(result)
When we execute the above code, it produces the following result :
[[1]]
[1] 1 2 3 4 5
[[1]]
[1] 10 11 12 13 14
[1] 1 2 3 4 5
[1] 10 11 12 13 14
[1] 11 13 15 17 19

Statistical Computing Using R 5.5 R-List

5.7 DATA FRAMES:

A data frame is a table or a two-dimensional array-like structure in which each column
contains values of one variable and each row contains one set of values from each column.
Following are the characteristics of a data frame.
 The column names should be non-empty.
 The row names should be unique.
 The data stored in a data frame can be of numeric, factor or character type.
 Each column should contain same number of data items.

5.7.1 Create Data Frame

Create the data frame.
emp.data <- data.frame(
emp_id = c (1:5),
emp_name = c("Rick","Dan","Michelle","Ryan","Gary"),
salary = c(623.3,515.2,611.0,729.0,843.25),
start_date = as.Date(c("2012-01-01","2013-09-23","2014-11-15","2014-05-
11","2015-03-27")),
stringsAsFactors=FALSE
)
Print the data frame.
print(emp.data)
When we execute the above code, it produces the following result:
emp_id emp_name salary start_date
1 1 Rick 623.30 2012-01-01
2 2 Dan 515.20 2013-09-23
3 3 Michelle 611.00 2014-11-15
4 4 Ryan 729.00 2014-05-11
5 5 Gary 843.25 2015-03-27

Get the Structure of the Data Frame

The structure of the data frame can be seen by using str() function.
Create the data frame.
emp.data <- data.frame(
emp_id = c (1:5),
emp_name = c("Rick","Dan","Michelle","Ryan","Gary"),
salary = c(623.3,515.2,611.0,729.0,843.25),
start_date = as.Date(c("2012-01-01","2013-09-23","2014-11-15","2014-05-
11","2015-03-27")),
stringsAsFactors=FALSE
)

Get the structure of the data frame.
str(emp.data)
When we execute the above code, it produces the following result:

'data.frame': 5 obs. of 4 variables:
$ emp_id : int 1 2 3 4 5

Center for Distance Education 5.6 Acharya Nagarjuna University

$ emp_name : chr "Rick" "Dan" "Michelle" "Ryan" ...
$ salary : num 623 515 611 729 843
$ start_date: Date, format: "2012-01-01" "2013-09-23" "2014-11-15" "2014-05-

Summary of Data in Data Frame:

The statistical summary and nature of the data can be obtained by applying
summary() function.

Create the data frame.
emp.data <- data.frame(
emp_id = c (1:5),
emp_name = c("Rick","Dan","Michelle","Ryan","Gary"),
salary = c(623.3,515.2,611.0,729.0,843.25),
start_date = as.Date(c("2012-01-01","2013-09-23","2014-11-15","2014-05-
11","2015-03-27")),
stringsAsFactors=FALSE
)
Print the summary.
print(summary(emp.data))

When we execute the above code, it produces the following result:
emp_id emp_name salary start_date
Min. :1 Length:5 Min. :515.2 Min. :2012-01-01
1st Qu.:2 Class :character 1st Qu.:611.0 1st Qu.:2013-09-23
Median :3 Mode :character Median :623.3 Median :2014-05-11
Mean :3 Mean :664.4 Mean :2014-01-14
3rd Qu.:4 3rd Qu.:729.0 3rd Qu.:2014-11-15
Max. :5 Max. :843.2 Max. :2015-03-27

5.8 EXTRACT DATA FROM DATA FRAME:

Extract specific column from a data frame using column name.

Create the data frame.
emp.data <- data.frame(
emp_id = c (1:5),
emp_name = c("Rick","Dan","Michelle","Ryan","Gary"),
salary = c(623.3,515.2,611.0,729.0,843.25),
start_date = as.Date(c("2012-01-01","2013-09-23","2014-11-15","2014-05-
11","2015-03-27")),
stringsAsFactors=FALSE
)

Extract Specific columns.
result <- data.frame(emp.data$emp_name,emp.data$salary)
print(result)

When we execute the above code, it produces the following result:

Statistical Computing Using R 5.7 R-List

emp.data.emp_name emp.data.salary
1 Rick 623.30
2 Dan 515.20
3 Michelle 611.00
4 Ryan 729.00
5 Gary 843.25
Extract the first two rows and then all columns

Create the data frame.
emp.data <- data.frame(
emp_id = c (1:5),
emp_name = c("Rick","Dan","Michelle","Ryan","Gary"),
salary = c(623.3,515.2,611.0,729.0,843.25),
start_date = as.Date(c("2012-01-01","2013-09-23","2014-11-15","2014-05-11","2015-03-
27")),stringsAsFactors=FALSE)

Extract first two rows.
result <- emp.data[1:2,]
print(result)

When we execute the above code, it produces the following result:

emp_id emp_name salary start_date
1 1 Rick 623.3 2012-01-01
1 2 Dan 515.2 2013-09-23

Extract 3rd and 5th row with 2nd and 4th column
Create the data frame.
emp.data <- data.frame(
emp_id = c (1:5),
emp_name = c("Rick","Dan","Michelle","Ryan","Gary"),
salary = c(623.3,515.2,611.0,729.0,843.25),
start_date = as.Date(c("2012-01-01","2013-09-23","2014-11-15","2014-05-11","2015-03-
27")),stringsAsFactors=FALSE)

Extract 3rd and 5th row with 2nd and 4th column.
result <- emp.data[c(3,5),c(2,4)]
print(result)

When we execute the above code, it produces the following result:

emp_name start_date
3 Michelle 2014-11-15
5 Gary 2015-03-27

5.8.1 Expand Data Frame
A data frame can be expanded by adding columns and rows.

Center for Distance Education 5.8 Acharya Nagarjuna University

Add Column

Just add the column vector using a new column name.

Create the data frame.
emp.data <- data.frame(
emp_id = c (1:5),
emp_name = c("Rick","Dan","Michelle","Ryan","Gary"),
salary = c(623.3,515.2,611.0,729.0,843.25),
start_date = as.Date(c("2012-01-01","2013-09-23","2014-11-15","2014-05-11","2015-03-
27")),stringsAsFactors=FALSE)

Add the "dept" coulmn.
emp.data$dept <- c("IT","Operations","IT","HR","Finance")
v <- emp.data
print(v)
When we execute the above code, it produces the following result:

emp_id emp_name salary start_date dept
1 1 Rick 623.30 2012-01-01 IT
2 2 Dan 515.20 2013-09-23 Operations
3 3 Michelle 611.00 2014-11-15 IT
4 4 Ryan 729.00 2014-05-11 HR
5 5 Gary 843.25 2015-03-27 Finance

 5.8.2 Add Row

To add more rows permanently to an existing data frame, we need to bring in the new
rows in the same structure as the existing data frame and use the rbind() function.
In the example below we create a data frame with new rows and merge it with the existing
data frame to create the final data frame.

Create the first data frame.
emp.data <- data.frame(
emp_id = c (1:5),
emp_name = c("Rick","Dan","Michelle","Ryan","Gary"),
salary = c(623.3,515.2,611.0,729.0,843.25),
start_date = as.Date(c("2012-01-01","2013-09-23","2014-11-15","2014-05-
11","2015-03-27")),
dept=c("IT","Operations","IT","HR","Finance"),
R Programming
78
stringsAsFactors=FALSE
)
Create the second data frame
emp.newdata <- data.frame(
emp_id = c (6:8),
emp_name = c("Rasmi","Pranab","Tusar"),
salary = c(578.0,722.5,632.8),
start_date = as.Date(c("2013-05-21","2013-07-30","2014-06-17")),

Statistical Computing Using R 5.9 R-List

dept = c("IT","Operations","Fianance"),
stringsAsFactors=FALSE
)
Bind the two data frames.
emp.finaldata <- rbind(emp.data,emp.newdata)
print(emp.finaldata)
When we execute the above code, it produces the following result:
emp_id emp_name salary start_date dept
1 1 Rick 623.30 2012-01-01 IT
2 2 Dan 515.20 2013-09-23 Operations
3 3 Michelle 611.00 2014-11-15 IT
4 4 Ryan 729.00 2014-05-11 HR
5 5 Gary 843.25 2015-03-27 Finance
6 6 Rasmi 578.00 2013-05-21 IT
7 7 Pranab 722.50 2013-07-30 Operations

8 8 Tusar 632.80 2014-06-17 Fianance

5.9 ATTACH DATA FRAMES:

The attach() function offers a solution to this: it takes a data frame as an argument and places
it in the search path at position 2.

So unless there are variables in position 1 that are exactly the same as the ones from the data
frame that you have inputted, the variables are considered as variables that can be
immediately called on.

Note that the search path is in fact the order in which R accesses files. You can look this up
by entering the search() function.

Look up the search path
search()
Attach the `writers_df`

attach(writers_df)

Alternatively, use `with()` to attach `writers_df`

with(writers_df, c("Age.At.Death", "Age.As.Writer", "Name", "Surname", "Gender",
"Death"))

Return `writers_df`

writers_df

> # Look up the search path

>search()

[1] ".GlobalEnv" "package:stats" "package:graphics"

[4] "package:grDevices" "package:utils" "package:datasets"

[7] "package:methods" "Autoloads" "package:base"

Center for Distance Education 5.10 Acharya Nagarjuna University

> # Attach the `writers_df`

> attach(writers_df)

The following objects are masked _by_ .GlobalEnv:

Age.As.Writer, Age.At.Death, Death, Gender, Name, Surname

The following objects are masked from writers_df (pos = 3):

Age.As.Writer, Age.At.Death, Death, Gender, Name, Surname

> # Alternatively, use `with()` to attach `writers_df`

>with(writers_df, c("Age.At.Death", "Age.As.Writer", "Name", "Surname", "Gender",
"Death"))

[1] "Age.At.Death" "Age.As.Writer" "Name" "Surname"

[5] "Gender" "Death"

> # Return `writers_df`

>writers_df

Age.At.DeathAge.As.Writer Name Surname Gender Death

1 22 16 John Doe MALE 2015-05-10

2 40 18 Edgar Poe MALE 1849-10-07

3 72 36 Walt Whitman MALE 1892-03-26

4 41 36 Jane Austen FEMALE 1817-07-18

Detach ()
detach () function just reverses the function of attach().It removes the specified variable from
the global environment, so you cannot access the variable directly as before.

5.10 SUMMARY:

Understanding lists and data frames is crucial for efficient data management and
analysis in R. Lists allow for storing diverse types of data in a single structure, whereas data
frames are fundamental for handling tabular data, which is widely used in data analysis.
Mastery of these data structures equips students with the capability to manipulate, merge, and
transform data efficiently, laying the groundwork for more advanced data analysis and
statistical operations in R.

5.11 SELF ASSESSMENT QUESTIONS:

1. What is a list in R, and how is it different from a vector?
2. Explain the process of naming elements in a list.
3. How can you access and manipulate elements in a list?

Statistical Computing Using R 5.11 R-List

4. Describe the steps involved in merging two lists in R.
5. What are data frames in R? How are they different from matrices?
6. Write an R script to create a list containing a vector, a matrix, and a character string.

Access the second element of the list.
7. Create a data frame containing the names, ages, and marks of five students. Extract

the 'marks' column from the data frame.
8. Write a code snippet to add a new row to an existing data frame.

5.12 SUGGESTED READINGS:

1) Dr. Mark Gardener (2012): Beginning R – The Statistical Programming Language,
Wiley India Pvt Ltd.

2) W. N. Venables and D. M. Smith(2016): An Introduction to R
3) J.P. Lander(2014):R for Everyone, Pearson Publications

4) Garrett Grolemund : Hands-On Programming with R

5) Michael J. Crawley: The R Book

 Dr. SYED JILANI

LESSON 6

READING AND GETTING DATA INTO R USING
FILES

OBJECTIVES:

After studying this unit, you should be able to:
 Understand the Process of Reading and Importing Data into R.
 Students should have a solid understanding about the reading and getting data into r

using files.
 The student will learn a reading and getting data into r using files.
 Further, the student will be familiar reading and getting data into r using files.

STRUCTURE:

6.1 Reading and getting data into R using files

6.2 Using the combine Command for Making Data

6.3 Reading Bigger data Files

6.4 Alternative Commands for Reading Data in R

6.5 Saving Data using files

 6.5.1 Save () command
6.5.2 Load () command

6.6 Writing data using files

 6.6.1 Write. table ()
 6.6.2 File. choose()

6.7 Reading a data using files

6.8 Conclusion

6.9 Self Assessment Questions

6.10 Further Readings

6.1 READING AND GETTING DATA INTO R USING FILES:

So far you have looked at some simple math. More often you will have sets of data to
examine (that is, samples) and will want to create more complex series of numbers to work
on. You cannot perform any analyses if you do not have any data so getting data into R is a
very important task. This next section focuses on ways to create these complex samples and
get data into R, where you are able to undertake further analyses.

6.3 USING THE COMBINE COMMAND FOR MAKING DATA:

The simplest way to create a sample is to use the c() command. You can think of this as short
forcombine or concatenate, which is essentially what it does. The command takes the
following form:

Center for Distance Education 6.2 Acharya Nagarjuna University

c(item.1, item.2, item.3, item .n)

Everything in the parentheses is joined up to make a single item. More usually you will
assign the joined-up items to a named object:
sample.name = c(item.1, item.2, item.3, item.n)

 This is much like you did when making simple result objects, except now your
sample objects consist of several bits rather than a single value.

6.3 READING BIGGER DATA FILES:

The scan() command is helpful to read a simple vector. More often though, you will
have complicated data files that contain multiple items (in other words two-dimensional items
containing both rows and columns). Although it is possible to enter large amounts of data
directly into R, it is more likely that you will have your data stored in a spreadsheet. When
you are sent data items, the spreadsheet is also the most likely format you will receive. R
provides the means to read data that is stored in a range of text formats, all of which the
spreadsheet is able to create. The read.csv () command.

In most cases you will have prepared data in a spreadsheet. Your dataset could be quite large
and it would be tedious to use the clipboard. When you have more complex data it is better to
use a new command—read.csv ():
names toread.csv()

 As you might expect, this looks for a CSV file and reads the enclosed data into R. You can
add a variety of additional instructions to the command. For example:

read. csv(file, sep = ',', header = TRUE, row. names)

 You can replace the file with any filename as before. By default the separator is set to a
comma but you can alter this if you need to. This command expects the data to be in columns,
and for each column to have a helpful name. The instruction header = TRUE, the default,
reads the first row of the CSV file and sets this as a name for each column. You can override
this with header = FALSE.

 The row.names part allows you to specify row names for the data; generally this will be
a column in the dataset (the first one is most usual and sensible). You can set the rownames
be one of the columns by setting row.names = n, where n is the column number.
Some simple example data are shown in Table 2-2. Here you can see two columns; each one
is a variable. The first column is labelled abund; this is the abundance of some water-living
organism. The second column is labelled flow and represents the flow of water where the
organism was found.

Simple Data from a Two Column Spreadsheet

ABUND FLOW
9 2

25 3
15 5
2 9

Statistical Computing Using R 6.3 Reading and getting data…

14 14
25 24
24 29
47 34

In this case there are only two columns and it would not take too long to use the

scan() command to transfer the data into R. However, it makes sense to keep the two columns
together and import them to R as a single entity. To do so, perform the following steps:

1. If you have a file saved in a proprietary format (for example, XLS), save the data as a CSV
File instead.
2. Now assign the file a sensible name and use the read.csv() command as follows:
>fw = read.csv(file.choose())
3. Select the file from the browser window. If you are using Linux, the filename must be
typedin full. Because the read.csv() command is expecting the data to be separated with
commas,you do not need to specify that. The data has headings and because this is also the
default, you do not need to tell R anything else.

4.>fw
 Abund flow
1 9 2
2 25 3
3 15 5
4 2 9
5 14 14
6 25 24
7 24 2
8 47 34

You can see that each row is labelled with a simple index number; these have no great
relevance but can be useful when there are a lot of data.

In the general, the read.csv () command is pretty useful because the CSV format is most
easily produced by a wide variety of computer programs, spreadsheets, and is eminently
portable. Using CSV means that you have fewer options to type into R and consequently less
typing.

6.4 ALTERNATIVE COMMANDS FOR READING DATA IN R:

There are many other formats besides CSV in which data can exist and in which other
characters, including spaces and tabs, can separate data. Consequently, the read.table()
command is actually the basic R command for reading data. It enables you to read most
formats of plain-text data. However, R provides variants of the command with certain
defaults to make it easier when specifying some common data formats, like read.csv() for
CSV files. Since most data is CSV though, the read.csv()is the most useful of these variants.
But you may run into alternative formats, and the following list outlines:
The basic read.table() as well as other commands you can use to read various types of data:

In this case you have to specify the additional instructions explicitly. The defaults are set to
header = FALSE, sep = “ “ (a single space), and dec = “.”,

Center for Distance Education 6.4 Acharya Nagarjuna University

For example:
data1 data2 data3
1 2 4
In the following example the data are separated by simple spaces. The read. table ()
command is a more generalized command and you could use this at any time to read your
data.
4 5 3
3 4 5
3 6 6
4 5 9
>my.ssv = read.table(file.choose(), header = TRUE)
>my.ssv = read.csv(file.choose(), sep = ' ')

The next example shows data separated by tabs. If you have tab-separated values you can use
the read.delim() command. In this command R assumes that you still have column heading
names but this time the separator instruction is set to sep = “\t” (a tab character) by default:

data1 data2 data3
1 2 4
4 5 3
3 4 5
3 6 6
4 5 9
>my.tsv = read.delim(file.choose())
>my.tsv = read.csv(file.choose(), sep = '\t')
>my.tsv = read.table(file.choose(), header = TRUE, sep = '\t')

The next example also shows data separated by tabs. In some countries the decimal point
character is not a period but a comma, and a semicolon often separates data values. If you
have a file like this you can use another variant, read.csv2(). Here the defaults are set to
sep = “;”, header = TRUE, and dec = “,”.
day data1 data2 data3
mon 1 2 4
tue 4 5 3
wed 3 4 5
thu 3 6 6
fri 4 5 9
>my.list = read.delim(file.choose(), row.names = 1)
>my.list = read.csv(file.choose(), row.names = 1, sep = '\t')
>my.list = read.table(file.choose(), row.names = 1, header = TRUE,sep = '\t'

6.4 SAVING DATA USING FILES:

It is not really convenient to quit R every time you want to save your work to disk.

Sometimes, if you are working on several items or projects at a time you may even want to
save these separately.
Fortunately, R provides a solution; you can save individual objects, or indeed all the objects,
to disk at any time using the save() command.

Statistical Computing Using R 6.5 Reading and getting data…

6.5.1 Save () command:

The save() command operates like so:
save(list, file = 'filename')

You need to specify a filename and it must be in quotes. The file will be saved to the current
working directory by default. The list instruction can be in one of two forms: you can simply
type the names of the objects you want to save separated with commas or you can link to a
list of names created by some other means. Look at the examples that follow:

>save(bf, bf.lm, bf.beta, file = 'Desktop/butterfly.RData')
>save(list=ls(pattern='^bf'),file = 'Desktop/butterfly.RData')

In the first case three objects were specified (bf, bf.lm, and bf.beta), and in the second
examplethe ls() command was used to create a list of objects beginning with bf. In both cases,
the outputfile was saved to the Desktop folder rather than the default.

6.5.2 Load() command:

When you save a file to disk, R saves the data in a binary format. This means that the file
cannot be read by a regular word processor or text editor. You can read one of these binary
files from within R using the load() command:

load(file = ‘filename.Rdata’)

You need to put the filename in quotes (single or double, as long as the pair match) and
remember to include the extension. The usual extension to use is .Rdata. If the file is not in
your working directory the full path must be entered (all in the quotes). Alternatively, you
can use the file.choose() instruction and select your file if you are using Windows or
Macintosh operating systems.

load(file = file.choose())

Once the file is read, any data objects that were saved in it are available and can be seen by
using the ls() command.
It is also possible to load binary data items directly from your operating system by double-
clicking the file you want. In Windows and Macintosh systems the .Rdata file extension
should automatically become associated with R when you install the program. This is a useful
way to open R because the only data that is loaded will be the data within the .Rdata file.

6.6 WRITING DATA USING FILES:

If you have a vector, you can use the write() command. The basic form of the command is
thefollowing:

write(x, file = "data", ncolumns = if(is.character(x)) 1 else 5, sep = " ")

This looks a bit complicated because the ncolumns = part contains a conditional statement.
This is because the if() statement creates a file with multiple columns according to the type of
data. If the data are text, a single column is created. If the data are numeric, five columns are

Center for Distance Education 6.6 Acharya Nagarjuna University

created (you can alter the number of columns). The items are separated by a space by default;
you can change this by altering the sep = instruction. For example, the following code snippet
contains a list of numbers.

The write() command sees that these are numeric and creates five columns by default. The
data areseparated with commas.

> data7
[1] 23.0 17.0 12.5 11.0 17.0 12.0 14.5 9.0 11.0 9.0 12.5 14.5 17.0 8.0 21.0

>write(data7, file = 'Desktop/data7.txt', sep = ',')

The resulting file looks like the following if viewed in a basic text editor:
23,17,12.5,11,17
12,14. ,9,11,9
12.5,14.5,17,8,21

If you want to create a single column you set the ncolumns = instruction to 1. If you want to
createa single row you need to know how many items there are and set the number of
columns to thisvalue. You can do this automatically like so:

>write(data7, file = 'Desktop/data7.txt', sep = ',', ncolumns = length(data7))

Here a command called length() was used, which determines how “long” the vector of data
is.The resulting file looks like the following:

23,17,12.5,11,17,12,14.5,9,11,9,12.5,14.5,17,8,21

6.6.1 Write. table():

If you have a matrix object or a data frame, you need to use the write.table() command. The
basic command has various instructions that can be set as follows:

write.table(mydata, file = 'filename', row.names = TRUE, sep = ' ', col.names=TRUE)

If you want to make a CSV file, you could use the alternative write.csv() command. This is
essentially the same but the default settings are slightly different:

write.csv(mydata, file = 'filename', row.names = TRUE, sep = ',', col.names =TRUE)

The write.table() and write.csv() commands are most useful to save complex data items
thatcontain multiple columns.

6.6.2 File.choose():

The file.choose() instruction is useful because you can select files from different directories
without having to alter the working directory or type the names in full.
Using the file.choose() instruction does not work on Linux operating systems.

Statistical Computing Using R 6.7 Reading and getting data…

6.7 READING A DATA USING FILES:

To read a file with the scan() command you simply add file = ‘filename’ to the command.
For example:

> data6 = scan(file = 'test data.txt')
Read 15 items
> data6
[1] 23.0 17.0 12.5 11.0 17.0 12.0 14.5 9.0 11.0 9.0 12.5 14.5 17.0 8.0 21.0

 In this example the data file is called test data.txt, which is plain text, and the numerical
values are separated by spaces. Note that the filename must be enclosed in quotes (single or
double). Of course you can use the what = and sep = instructions as appropriate.

 6.8 SUMMARY:

R provides a flexible and diverse set of tools for data input and output,
accommodating various file types and dataset sizes. When working with large datasets,
functions like fread() from data.table and read_csv() from readr offer significantly better
performance compared to base R functions. The save() and load() commands enable efficient
storage and retrieval of R objects, helping to preserve workspaces for future use.
Additionally, the file.choose() function allows users to interactively select files, eliminating
the need to manually specify file paths.

6.9 SELF ASSESSMENT QUESTIONS:

1. What is the purpose of the read.csv() function in R? Provide an example.
2. Explain the use of the c() function in R. How is it different from read.table()?
3. How would you optimize reading a large dataset in R? Mention any two functions.
4. What are the alternatives to read.table() in R for reading data? List at least three.
5. Explain the difference between save() and write.table() in R.
6. Write an R script to:
7. Read a CSV file.
8. Display the first few rows.
9. Save the data to an .RData file.
10. How can file.choose() simplify the process of reading and writing data in R?
11. What is the difference between load() and read.csv() functions in R?

6.10 SUGGESTED READINGS:

1) Dr. Mark Gardener (2012): Beginning R – The Statistical Programming Language,
Wiley India Pvt Ltd.

2) W. N. Venables and D. M. Smith(2016): An Introduction to R
3) J.P. Lander(2014):R for Everyone, Pearson Publications

4) Garrett Grolemund : Hands-On Programming with R

5) Michael J. Crawley: The R Book

 Dr. SYED JILANI

 LESSON -7

CONTROL STATEMENTS

OBJECTIVES:

After studying this unit, you should be able to:

 Understand the importance of Decision Making Statements
 Students should have a solid understanding about the Decision Making Statements
 .To know the concepts of Decision Making Statements
 To acquire knowledge about Control Statements

STRUCTURE

7.1 Introduction

7.2 if-statements

7.3 if-else statements

7.4 if-else-if statement

7.5 nested-if statements

7.6 switch statement

7.7 Conclusion

7.8 Self Assessment Questions

7.9 Further Readings

7.1 INTRODUCTION:

Decision-making statements, also known as conditional statements, are a fundamental
component of programming languages, including R. They enable programmers to make
decisions based on conditions, allowing code to execute different paths or actions depending
on specific criteria.

Decision-making statements are essential in programming because they:

1. Enable conditional execution: Decision-making statements allow code to execute specific
blocks of code only when certain conditions are met.
2. Improve code flexibility: Decision-making statements enable code to adapt to different
situations and inputs.
3. Enhance code readability: Decision-making statements make code more readable by
providing a clear structure and organization.
Key Elements of Decision-Making Statements

1. Condition: a logical expression that evaluates to TRUE or FALSE
2. Action: a block of code that executes when the condition is TRUE
3. Alternative action: a block of code that executes when the condition is FALSE

By mastering decision-making statements, you'll be able to write more flexible,
efficient, and effective code.

Center for Distance Education 7.2 Acharya Nagarjuna University

7.2 IF STATEMENT:

The conditional if statement is used to test an expression. If the test_expression is TRUE,
the statement gets executed. But if it’s FALSE, nothing happens.

syntax of if statement
if (test_expression) {
 statement
}

 Example:

x<-c(8,3,-2,5)
without curly braces
if(any(x<0))print("x contains negative numbers")

Statistical Computing Using R 7.3 Control Statements

[1] "x contains negative numbers"

with curly braces produces same result
if(any(x<0)){
print("x contains negative numbers")
}
[1] "x contains negative numbers"

an if statement in which the test expression is FALSE

does not produce any output
y<-c(8,3,2,5)

if(any(y<0)){
print("y contains negative numbers")
}

7.3 IF...ELSE STATEMENT:

The conditional if...else statement is used to test an expression similar to the if statement.
However, rather than nothing happening if the test_expression is FALSE, the else part of the
function will be evaluated.

syntax of if...else statement
if(test_expression){
statement1
}else{
statement2
}

Center for Distance Education 7.4 Acharya Nagarjuna University

Example:

This test results in statement 1 being executed
x<-c(8,3,-2,5)
if(any(x<0)){
print("x contains negative numbers")
}else{
print("x contains all positive numbers")
}

Output
 [1] "x contains negative numbers"

This test results in statement 2 (or the else statement) being executed

y<-c(8,3,2,5)
if(any(y<0)){
print("y contains negative numbers")
}else{
print("y contains all positive numbers")
}

Output

[1] "y contains all positive numbers"

7.4 IF-ELSE-IF STATEMENT:

The if-else if statement is a control structure in R that allows you to execute different blocks
of code based on multiple conditions.

Statistical Computing Using R 7.5 Control Statements

Syntax:

if (condition1) {
 # code to be executed if condition1 is TRUE
} else if (condition2) {
 # code to be executed if condition1 is FALSE and condition2 is TRUE
} else {
 # code to be executed if all conditions are FALSE
}

How it Works:
1. The first condition (condition1) is checked.
2. If condition1 is TRUE, the code inside the if block is executed.
3. If condition1 is FALSE, the second condition (condition2) is checked.
4. If condition2 is TRUE, the code inside the else if block is executed.
5. If all conditions are FALSE, the code inside the else block is executed.

Example:
x <- 5
if (x > 10) {
 print("x is greater than 10")
} else if (x == 5) {
 print("x is equal to 5")
} else {
 print("x is less than 5")
}

output:
This code will print "x is equal to 5".

EXAMPLE 2
num <- 10
if (num > 10) {
 print("Number is greater than 10")
} else if (num < 10) {
 print("Number is less than 10")
} else {
 print("Number is exactly 10")
}

Explanation

1. If num > 10, it prints "Number is greater than 10".
2. If num < 10, it prints "Number is less than 10".
3. If neither condition is true (i.e., num == 10), it prints "Number is exactly 10".

Center for Distance Education 7.6 Acharya Nagarjuna University

FLOW CHART

7.5 NESTED IF- ELSE STATEMENT:

Placing one If Statement inside another If Statement is called as Nested If Else in R
Programming. The R If else statement allows us to print different statements depending upon
the expression result (TRUE, or FALSE). Sometimes we have to check further when the
condition is TRUE. In these situations, we can use this Nested If Else concept

The basic syntax of the Nested If Else Statement in R Programming language is as follows:

if (Boolean_Expression 1) {
 #Boolean_Expression 1 result is TRUE then, it will check for Boolean_Expression 2
 if (Boolean_Expression 2) {
 #Boolean_Expression 2 result is TRUE, then these statements will be executed
 Boolean_Expression 2 True statements
 } else {
 #Boolean_Expression 2 result is FALSE then, these statements will be executed
 Boolean_Expression 2 False statements
} else {
 #If the Boolean_Expression 1 result is FALSE, these statements will be executed
 Boolean_Expression 1 False statements
}

Statistical Computing Using R 7.7 Control Statements

Flow chart

7.6 SWITCH STATEMENT:

The working functionality of the switch case in R programming is almost same as R If
Statement. As we said before, Switch statement may have n number of options so, switch
case compares the expression value with the values assigned in the position. If both the
expression value and case value match then statements present in that position will execute.
Let us see the syntax of switch case for better understanding.

switch(expression,

 case1 = value1,

 case2 = value2,

 case3 = value3,

 ...
)

Explanation:
 expression: Evaluates to a value (typically a string or numeric index).
 case1, case2, ...: Values associated with each case. If expression matches a case, the

corresponding value is returned.
 If expression is numeric, it selects the position (e.g., 1 selects the first value).
 If expression is a character string, it selects the value associated with the matching

name.

Center for Distance Education 7.8 Acharya Nagarjuna University

Flow chart

Example 1: Using Character Matching
x <- "apple"

result <- switch(x,
 apple = "You chose Apple!",
 banana = "You chose Banana!",
 orange = "You chose Orange!",
 "Unknown choice"
)

print(result)

Output:

 [1] "You chose Apple!"

Example 2: Using Numeric Index

choice <- 2

result <- switch(choice,
 "Option 1 selected",
 "Option 2 selected",
 "Option 3 selected"
)

print(result)

Output:

[1] "Option 2 selected"

Statistical Computing Using R 7.9 Control Statements

7.7 SUMMARY:

Conditional statements in R are essential for controlling the flow of execution based
on certain conditions. They enable programs to make decisions and execute specific blocks of
code depending on whether a condition is true or false. The if statement executes a block of
code if a condition is true, while the if-else statement provides an alternative block if the
condition is false. The if-else-if structure is used when multiple conditions need to be
checked sequentially. Nested if statements allow for more complex decision-making by
placing one condition inside another. Additionally, the switch() statement is a useful
alternative for selecting from multiple options based on a value, offering a cleaner solution
than lengthy if-else chains. Together, these statements improve the flexibility and efficiency
of R programs, allowing them to handle various situations and data conditions dynamically.

7.8 SELF ASSESSMENT QUESTIONS:

1. What is the purpose of an if statement in R? Provide an example.
2. Explain the difference between if and if-else statements with suitable examples.
3. How does an if-else-if statement work in R? Write a program to check whether a

number is positive, negative, or zero.
4. Write an R program using nested if statements to check if a number is even and

greater than 10.
5. Describe the switch() statement in R. How is it different from if-else? Provide an

example.
6. Write a program in R to print the grade of a student based on the following marks:

a) Marks >= 90: "A"
b) Marks >= 75: "B"
c) Marks >= 50: "C"
d) Marks < 50: "Fail"

7.9 SUGGESTED READINGS:

1) Dr. Mark Gardener (2012): Beginning R – The Statistical Programming Language,
Wiley India Pvt Ltd.

2) W. N. Venables and D. M. Smith(2016): An Introduction to R
3) J.P. Lander(2014):R for Everyone, Pearson Publications

4) Garrett Grolemund : Hands-On Programming with R

5) Michael J. Crawley: The R Book

 Dr. SYED JILANI

LESSON -8

LOOPING STATEMENTS

OBJECTIVES:

After studying this unit, you should be able to:

 To understanding the concepts of looping statements
 Will be able to write own R-scripts
 To acquire knowledge about R programming
 To understand the purpose and objectives Decision Making Statements

STRUCTURE:

8.1 Introduction

8.2 For Loop

8.3 While Loop

8.4 Repeat Statement

8.5 Break Statement

8.6 Next Statement

8.7 Functions

8.7.1 Function Components

 8.7.2 Function Arguments

 8.7.3 Multi Arguments Function

 8.7.4 Writing a Function in R

8.8 User Defined Functions

8.9 Conclusion

8.10 Self Assessment Questions

8.11 Further Readings

8.1 INTRODUCTION:

Looping statements are a core concept in programming that allows a programmer to
execute a block of code multiple times based on certain conditions. They are essential for
performing repetitive tasks without the need to write the same code over and over again.

Why Are Loops Important
Loops help in automating repetitive tasks, improving code efficiency, and making programs
more concise and readable. Instead of manually repeating code, a loop can handle the
repetition, reducing errors and making the code more maintainable.

Centre for Distance Education 8.2 Acharya Nagarjuna University

8.2 FOR LOOP:

A for loop in R is used to iterate over a sequence (such as a vector, list, or range of
numbers). It repeats a set of instructions for each element in the sequence. The for loop is
extremely useful when you need to perform repetitive tasks in your R programs.

Why Use a For Loop in R

For loops are ideal when the number of iterations is known or finite. They help automate
repetitive tasks, making the code more concise, efficient, and easier to maintain.
Basic Syntax of For Loop in R:

The basic structure of a for loop in R is:

for (variable in sequence) {

 # Code to execute

}

 variable: The loop variable, which will take each value in the sequence.
 sequence: A sequence of values (can be a vector, list, or range).

How Does a For Loop

1. The loop starts by initializing the variable to the first value in the sequence.
2. It then executes the block of code inside the loop.
3. After each iteration, the variable is updated to the next value in the sequence.
4. The loop continues until all elements of the sequence have been processed.

Example 1

for (i in 1:5) {

 print(i)

}

Explanation:

 The 1:5 creates a sequence from 1 to 5.
 The loop runs five times, and in each iteration, the value of i is printed.

Output:

[1] 1
[1] 2
[1] 3
[1] 4
[1] 5

Statistical Computing Using R 8.3 Lopping Statements

Example 2
fruits <- c("apple", "banana", "cherry")
for (fruit in fruits) {
 print(fruit)
}
The loop iterates over the fruits vector, printing each fruit in the list.

[1] "apple"

[1] "banana"

[1] "cherry"

The for loop is used to execute repetitive code statements for a particular number of
times. The general syntax is provided below where i is the counter and as i assumes each
sequential value defined (1 through 100 in this example) the code in the body will be
performed for that ith value.

syntax of for loop
for(iin1:100){
<dostuffherewithi>
}
Example:

for(iin2010:2016){
output<-paste("The year is",i)
print(output)
}
[1] "The year is 2010"
[1] "The year is 2011"
[1] "The year is 2012"
[1] "The year is 2013"
[1] "The year is 2014"
[1] "The year is 2015"
[1] "The year is 2016"

Flowchart

Centre for Distance Education 8.4 Acharya Nagarjuna University

8.3 WHILE LOOP:

While loops begin by testing a condition. If it is true, then they execute the statement.
Once the statement is executed, the condition is tested again, and so forth, until the condition
is false, after which the loop exits. It’s considered a best practice to include a counter object
to keep track of total iterations

syntax of while loop
counter<-1
while(test_expression){
statement
counter<-counter+1
}
Example:

counter<-1
x<-5
set.seed(3)

while(x>=3&&x<=8){
coin<-rbinom(1,1,0.5)
if(coin==1){## random walk
x<-x+1
}else{
x<-x-1
}
cat("On iteration",counter,", x =",x,'\n')
counter<-counter+1
}
Output:

On iteration 1 , x = 4
On iteration 2 , x = 5
On iteration 3 , x = 4
On iteration 4 , x = 3
On iteration 5 , x = 4
On iteration 6 , x = 5
On iteration 7 , x = 4
On iteration 8 , x = 3
On iteration 9 , x = 4
On iteration 10 , x = 5
On iteration 11 , x = 6
On iteration 12 , x = 7
On iteration 13 , x = 8
On iteration 14 , x = 9

Statistical Computing Using R 8.5 Lopping Statements

FLOW CHART

8.4 REPEAT LOOP:

A repeat loop is used to iterate over a block of code multiple number of times. There is test
expression in a repeat loop to end or exit the loop. Rather, we must put a condition statement
explicitly inside the body of the loop and use the break function to exit the loop. Failing to do
so will result into an infinite loop.The repeat statement is a control structure in R that allows
you to execute a block of code repeatedly until a certain condition is met.

syntax of repeat loop
counter<-1
repeat{
statement
if(test_expression){
break
}
counter<-counter+1
}
Example:

counter<-1
x<-NULL
repeat{
x<-c(x,round(runif(1,min=1,max=25)))
if(all(1:25%in%x)){
break
}

Centre for Distance Education 8.6 Acharya Nagarjuna University

counter<-counter+1
}
counter
[1] 75

Flow chart

8.5 BREAK ARGUMENTS:

The break argument is used to exit a loop immediately, regardless of what iteration the loop
may be on. break arguments are typically embedded in an if statement in which a condition is
assessed, if TRUE break out of the loop, if FALSE continue on with the loop. In a nested
looping situation, where there is a loop inside another loop, this statement exits from the
innermost loop that is being evaluated.

In this example, the for loop will iterate for each element in x; however, when it gets to the
element that equals 3 it will break out and end the for loop process.

x<-1:5

for(iinx){
if(i==3){
break
}
print(i)
}
Output:
[1] 1

[1] 2

Statistical Computing Using R 8.7 Lopping Statements

Example:

x<-1:5

for(iinx){
if(i==3){
next
}
print(i)
}
Output:
[1] 1
[1] 2
[1] 4
[1] 5

FLOW CHART

8.6 NEXT STATEMENT:

 The next statement in R is used within loops to skip the current iteration and move
directly to the next one. It is useful when certain conditions need to be met before continuing
with the next iteration.
Usage of next in Loops
The next statement is typically used in for and while loops. When the condition for next is
satisfied, the rest of the statements in that iteration are skipped, and the loop proceeds to the
next iteration.
Example 1

for (i in 1:10) {
 if (i %% 2 == 0) { # Check if the number is even
 next # Skip even numbers
 }
 print(i) # Print only odd numbers
}

Centre for Distance Education 8.8 Acharya Nagarjuna University

Explanation
 The loop iterates through numbers 1 to 10.
 If i is even (i %% 2 == 0), the next statement is executed, skipping the print(i)

command.
 As a result, only odd numbers are printed.

Example 2

x <- 0
while (x < 10) {
 x <- x + 1
 if (x %% 2 == 0) {
 next # Skip even numbers
 }
 print(x)

}
Use Cases of next Statement

1. Skipping specific values: Useful when certain values need to be ignored during
iteration.

2. Avoiding unnecessary computations: Helps improve efficiency by skipping
unwanted operations.

3. Handling special conditions: Useful for avoiding errors or unwanted processing.

Flow chart

8.7 FUNCTIONS:

A function, in a programming environment, is a set of instructions. A programmer builds a
function to avoid repeating the same task, or reduce complexity.

A function should be

 written to carry out a specified a tasks
 may or may not include arguments
 contain a body
 May or may not return one or more values.

Statistical Computing Using R 8.9 Lopping Statements

A general approach to a function is to use the argument part as inputs, feed the body part and
finally return an output. The Syntax of a function is the following:

Function (arglist) {
#Function body
}
8.7.1 Function components
The different parts of a function are −

 Function Name − This is the actual name of the function. It is stored in R
environment

as an object with this name.

 Arguments − An argument is a placeholder. When a function is invoked, you pass a
value to the argument. Arguments are optional; that is, a function may contain no
arguments. Also arguments can have default values.

 Function Body − The function body contains a collection of statements that defines
what the function does.

 Return Value − The return value of a function is the last expression in the function
body to be evaluated.

8.7.2 Function Arguments:

It’s useful to distinguish between the formal arguments and the actual arguments of a
function. The formal arguments are a property of the function, whereas the actual or calling
arguments can vary each time you call the function. This section discusses how calling
arguments are mapped to formal arguments, how you can call a function given a list of
arguments, how default arguments work, and the impact of lazy evaluation.

Functions have named arguments which potentially have default values.

1) The formal arguments are the arguments included in the function definition
2) The formals function returns a list of all the formal arguments of a function
3) Not every function call in R makes use of all the formal arguments Function

arguments
4) can be missing or might have default values

R functions arguments can be matched positionally or by name. So the following calls
to sd are all equivalent
mydata <- rnorm(100)
sd(mydata)
> sd(x = mydata)
> sd(x = mydata, na.rm = FALSE)
> sd(na.rm = FALSE, x = mydata)
> sd(na.rm = FALSE, mydata)
Even though it’s legal, I don’t recommend messing around with the order of the
arguments too much, since it can lead to some confusion.
You can mix positional matching with matching by name. When an argument is
matched by name, it is “taken out” of the argument list and the remaining unnamed
arguments are matched in the order that they are listed in the function definition.
> args(lm)

Centre for Distance Education 8.10 Acharya Nagarjuna University

function (formula, data, subset, weights, na.action, method = "qr", model = TRUE, x
= FALSE, y = FALSE, qr = TRUE, singular.ok = TRUE, contrasts = NULL, offset,
...)
The following two calls are equivalent.
lm(data = mydata, y ~ x, model = FALSE, 1:100)
lm(y ~ x, mydata, 1:100, model = FALSE)

 Most of the time, named arguments are useful on the command line when you
have a long argument list and you want to use the defaults for everything
except for an argument near the end of the list

 Named arguments also help if you can remember the name of the argument
and not its position on the argument list (plotting is a good example).

Function arguments can also be partially matched, which is useful for
interactive work. The order of operations when given an argument is
 Check for exact match for a named argument
 Check for a partial match
 Check for a positional match

8.7.3 Multi arguments function

We can write a function with more than one argument. Consider the function called "times".
It is a straightforward function multiplying two variables.

times <- function(x,y) {
x*y
}
times(2,4)

Output:

[1] 8.

8.7.4 Writing a function in R

In some occasion, we need to write our own function because we have to accomplish a
particular task and no ready made function exists. A user-defined function involves
a name, arguments and a body.

function.name <- function(arguments)
{
computations on the arguments
some other code
}

Note: A good practice is to name a user-defined function different from a built-in function. It
avoids confusion.

R has many in-built functions which can be directly called in the program without defining
them first. We can also create and use our own functions referred as user defined functions.

Statistical Computing Using R 8.11 Lopping Statements

8.8 USER DEFINED FUNCTIONS:

One of the great strengths of R is the user's ability to add functions. In fact, many of the
functions in R are actually functions of functions. The structure of a function is given below.

myfunction<-function(arg1,arg2,...){

statements

return(object)

}

Objects in the function are local to the function. The object returned can be any data type.
Here is an example.

mysummary <- function(x,npar=TRUE,print=TRUE) {

 if (!npar) {

 center <- mean(x); spread <- sd(x)

 } else {

 center <- median(x); spread <- mad(x)

 }

 if (print & !npar) {

 cat("Mean=", center, "\n", "SD=", spread, "\n")

 } else if (print & npar) {

 cat("Median=", center, "\n", "MAD=", spread, "\n")

 }

 result <- list(center=center,spread=spread)

 return(result)

}

Centre for Distance Education 8.12 Acharya Nagarjuna University

8.9 SUMMARY:

We explored various fundamental control flow structures and functions in R programming,
which are essential for creating efficient and readable code. We covered loops such as the for
loop and while loop, each of which serves a specific purpose in controlling the flow of
execution based on conditions. The repeat statement was also discussed, offering another
way to repeat actions, with the possibility of breaking the loop using the break statement or
skipping iterations using the next statement.

We also delved into functions, which are critical for encapsulating repetitive tasks and
ensuring code reusability. By understanding the components of a function, including
function arguments, we can write versatile functions that take multiple arguments. Learning
how to define user-defined functions in R also allows us to create tailored solutions for
specific tasks, providing a deeper understanding of how to structure programs effectively.

8.10 SELF ASSESSMENT QUESTIONS:

1. Write a for loop in R that prints all even numbers between 1 and 20.

2. Explain the concept of function arguments and give an example of a function with
multiple arguments in R.

3. What are the key components of a function in R? Provide an example function that
accepts two parameters and returns their sum.

4. Write a while loop in R that continuously asks the user for input until they enter the
word "stop".

5. Create a user-defined function in R that takes a list of numbers and returns the mean
and standard deviation of those numbers.

6. Using a repeat loop, create a program that keeps asking the user to guess a number
between 1 and 100, and ends when the correct number is guessed.

8.11 SUGGESTED READINGS:

1) Dr. Mark Gardener (2012): Beginning R – The Statistical Programming Language,
Wiley India Pvt Ltd.

2) W. N. Venables and D. M. Smith(2016): An Introduction to R
3) J.P. Lander(2014):R for Everyone, Pearson Publications

4) Garrett Grolemund : Hands-On Programming with R

5) Michael J. Crawley: The R Book

 Dr. SYED JILANI

LESSON -9

R- FUNCTIONS

OBJECTIVES:

After studying this unit, you should be able to:

 Will be able to handle the data analysis using the R-statistical tools
 The student will learn how to perform graphical presentation of the data
 Understand the concepts of R-functions
 Able to write Their own R-codes with and without using Built-in functions

STRUCTURE:

9.1 Built-in functions

9.2 General functions

 9.2.1 diff () function

 9.2.2 length () function

9.3 Statistical functions

9.4 Scoping:

 9.4.1 Scoping Rules:

 9.4.2 Environment Scoping

9.5 One argument function

9.6. Calling functions

9.7 R Codes for small standard statistical problems

9.8 Apply functions

 9.8.1 apply()

 9.8.2 sapply()

 9.8.3 lapply()

9.8.4 tapply()

9.9 Conclusion

9.10 Self Assessment Questions

9.11 Further Readings

9.1 BUILT-IN FUNCTIONS:

There is a lot of built-in function in R. R matches your input parameters with its function
arguments; either by value or by position, then executes the function body. Function
arguments can have default values: if you do not specify these arguments, R will take the
default value.

Centre for Distance Education 9.2 Acharya Nagarjuna University

Note: It is possible to see the source code of a function by running the name of the function
itself in the console.

We will see three groups of function in action

 General function
 Maths function
 Statistical function

9.2 GENERAL FUNCTIONS:

We are already familiar with general functions like cbind (), rbind(),range(),sort(),order()
functions. Each of these functions has a specific task, takes arguments to return an output.
Following are important functions one must know-

9.2.1 diff() function:

If you work on time series, you need to stationary the series by taking their lag values.
A stationary process allows constant mean, variance and autocorrelation over time. This
mainly improves the prediction of a time series. It can be easily done with the function diff().
We can build a random time-series data with a trend and then use the function diff() to
stationary the series. The diff() function accepts one argument, a vector, and return suitable
lagged and iterated difference.

Note: We often need to create random data, but for learning and comparison we want the
numbers to be identical across machines. To ensure we all generate the same data, we use the
set.seed() function with arbitrary values of 123. The set.seed() function is generated through
the process of pseudorandom number generator that make every modern computers to have
the same sequence of numbers. If we don't use set.seed() function, we will all have different
sequence of numbers.

set.seed(123)
Create the data
x = rnorm(1000)
ts <- cumsum(x)

Statistical Computing Using R 9.3 R-Functions

Stationary the serie
diff_ts <- diff(ts)
par(mfrow=c(1,2))
Plot the series
plot(ts, type='l')
plot(diff(ts), type='l')

9.2.2 length() function

In many cases, we want to know the length of a vector for computation or to be used in a for
loop. The length() function counts the number of rows in vector x. The following codes
import the cars dataset and return the number of rows.

Note: length() returns the number of elements in a vector. If the function is passed into a
matrix or a data frame, the number of columns is returned.

dt <- cars
number columns
length(dt)

Output:

[1] 1
number rows
length(dt[,1])

Centre for Distance Education 9.4 Acharya Nagarjuna University

Output:

[1] 50

Math functions

R has an array of mathematical functions.

Operator Description

abs(x) Takes the absolute value of x

log(x,base=y)
Takes the logarithm of x with base y; if base is

not specified, returns the natural logarithm

exp(x) Returns the exponential of x

sqrt(x) Returns the square root of x

factorial(x) Returns the factorial of x (x!)

sequence of number from 44 to 55 both including incremented by 1
x_vector <- seq(45,55, by = 1)
#logarithm
log(x_vector)

[1] 3.806662 3.828641 3.850148 3.871201 3.891820 3.912023 3.931826 3.951244 3.970292
3.988984 4.007333

#exponential

exp(x_vector)

Output:

3.493427e+19 9.496119e+19 2.581313e+20 7.016736e+20 1.907347e+21 5.184706e+21
1.409349e+22 3.831008e+22 1.041376e+23 2.830753e+23 7.694785e+23
#squared root

sqrt(x_vector)

 Output:

6.708204 6.782330 6.855655 6.928203 7.000000 7.071068 7.141428 7.211103 7.280110
7.348469 7.416198

#factorial

Statistical Computing Using R 9.5 R-Functions

factorial(x_vector)

Output:

1.196222e+56 5.502622e+57 2.586232e+59 1.241392e+61 6.082819e+62
3.041409e+64 1.551119e+66 8.065818e+67 4.274883e+69 2.308437e+71
1.269640e+73

9.3 STATISTICAL FUNCTIONS:

R standard installation contains wide range of statistical functions. In this tutorial, we will
briefly look at the most important function..

Basic statistic functions

Operator Description

mean(x) Mean of x

median(x) Median of x

var(x) Variance of x

sd(x) Standard deviation of x

scale(x) Standard scores (z-scores) of x

quantile(x) The quartiles of x

summary(x) Summary of x: mean, min, max etc..

speed <- dt$speed
speed
Mean speed of cars dataset
mean(speed)

Output:

[1] 15.4
Median speed of cars dataset
median(speed)

Output:

[1] 15
Variance speed of cars dataset
var(speed)

Centre for Distance Education 9.6 Acharya Nagarjuna University

Output:

[1] 27.95918
Standard deviation speed of cars dataset
sd(speed)

Output:

[1] 5.287644
Standardize vector speed of cars dataset
head(scale(speed), 5)

Output:

[,1]
[1,] -2.155969
[2,] -2.155969
[3,] -1.588609
[4,] -1.588609
[5,] -1.399489
Quantile speed of cars dataset
quantile(speed)

Output:

0% 25% 50% 75% 100%
4 12 15 19 25
Summary speed of cars dataset
summary(speed)

Output:

Min. 1st Qu. Median Mean 3rd Qu. Max.
4.0 12.0 15.0 15.4 19.0 25.0

Up to this point, we have learned a lot of R built-in functions.

Note: Be careful with the class of the argument, i.e. numeric, Boolean or string. For instance,
if we need to pass a string value, we need to enclose the string in quotation mark: "ABC" .

9.4 SCOPING:

Scoping is the set of rules that govern how R looks up the value of a symbol. In the example
below, scoping is the set of rules that R applies to go from the symbol x to its value 10:

x <- 10

x

[1] 10

Statistical Computing Using R 9.7 R-Functions

Understanding scoping allows you to:

 build tools by composing functions, as described in functional programming.

 overrule the usual evaluation rules and do non-standard evaluation, as described
in non-standard evaluation.

R has two types of scoping: lexical scoping, implemented automatically at the language
level, and dynamic scoping, used in select functions to save typing during interactive
analysis. We discuss lexical scoping here because it is intimately tied to function creation.
Dynamic scoping is described in more detail in scoping issues.

Lexical scoping looks up symbol values based on how functions were nested when they were
created, not how they are nested when they are called. With lexical scoping, you don’t need
to know how the function is called to figure out where the value of a variable will be looked
up. You just need to look at the function’s definition.

The “lexical” in lexical scoping doesn’t correspond to the usual English definition (“of or
relating to words or the vocabulary of a language as distinguished from its grammar and
construction”) but comes from the computer science term “lexing”, which is part of the
process that converts code represented as text to meaningful pieces that the programming
language understands.

There are four basic principles behind R’s implementation of lexical scoping:

 name masking
 functions vs. variables
 a fresh start
 dynamic lookup

9.4.1 Scoping Rules:

The scoping rules for R are the main feature that make it different from the original S
language.

1) The scoping rules determine how a value is associated with a free variable in a function
2) R uses lexical scoping or static scoping. A common alternative is dynamic scoping.
3) Related to the scoping rules is how R uses the search list to bind a value to a symbol
4) Lexical scoping turns out to be particularly useful for simplifying statistical computations

Consider the following function.

f <- function(x, y) {

x^2 + y / z

}

This function has 2 formal arguments x and y. In the body of the function there is another
symbol z. In this case z is called a free variable.

Centre for Distance Education 9.8 Acharya Nagarjuna University

The scoping rules of a language determine how values are assigned to free variables.
Free variables are not formal arguments and are not local variables (assigned insided
the function body).

9.4.2 Environment Scoping

In R, the environment is a collection of objects like functions, variables, data frame, etc.

R opens an environment each time Rstudio is prompted.

The top-level environment available is the global environment, called R_GlobalEnv. And
we have the local environment.

We can list the content of the current environment.

ls(environment())

Output

[1] "diff_ts" "dt" "speed" "square_function"
[5] "ts" "x" "x_vector"

You can see all the variables and function created in the R_Global Env.

The above list will vary for you based on the historic code you execute in R Studio.

Note that n, the argument of the square_function function is not in this global environment.

A new environment is created for each function. In the above example, the function
square_function() creates a new environment inside the global environment.

To clarify the difference between global and local environment, let's study the following
example

These function takes a value x as an argument and add it to y define outside and inside the
function

Statistical Computing Using R 9.9 R-Functions

The function f returns the output 15. This is because y is defined in the global environment.
Any variable defined in the global environment can be used locally. The variable y has the
value of 10 during all function calls and is accessible at any time.

Let's see what happens if the variable y is defined inside the function.

We need to dropp `y` prior to run this code using rm r

The output is also 15 when we call f(5) but returns an error when we try to print the value y.
The variable y is not in the global environment.

Finally, R uses the most recent variable definition to pass inside the body of a function. Let's
consider the following example:

R ignores the y values defined outside the function because we explicitly created a y variable
inside the body of the function.

Centre for Distance Education 9.10 Acharya Nagarjuna University

9.5 ONE ARGUMENT FUNCTION:

In the next snippet, we define a simple square function. The function accepts a value and
returns the square of the value.

square_function<- function(n)
{
compute the square of integer `n`
n^2
}
calling the function and passing value 4
square_function(4)

Code Explanation:

 The function is named square_function; it can be called whatever we want.
 It receives an argument "n". We didn't specify the type of variable so that the user

can pass an integer, a vector or a matrix
 The function takes the input "n" and returns the square of the input.

When you are done using the function, we can remove it with the rm() function.

after you create the function

rm(square_function)
square_function

On the console, we can see an error message :Error: object 'square_function' not found telling
the function does not exist.

Every operation is a function call

“To understand computations in R, two slogans are helpful:

 Everything that exists is an object.
 Everything that happens is a function call."

9.6. CALLING FUNCTIONS:

When calling a function you can specify arguments by position, by complete name, or by
partial name. Arguments are matched first by exact name (perfect matching), then by prefix
matching, and finally by position.

f <-function(abcdef, bcde1, bcde2) {

list(a = abcdef, b1 = bcde1, b2 = bcde2)

}

str(f(1, 2, 3))

List of 3

Statistical Computing Using R 9.11 R-Functions

$ a : num 1

$ b1: num 2

$ b2: num 3

str(f(2, 3, abcdef =1))

List of 3

$ a : num 1

$ b1: num 2

$ b2: num 3

Can abbreviate long argument names:

str(f(2, 3, a =1))

List of 3

$ a : num 1

$ b1: num 2

$ b2: num 3

But this doesn't work because abbreviation is ambiguous

str(f(1, 3, b =1))

Error in f(1, 3, b = 1): argument 3 matches multiple formal arguments

Generally, you only want to use positional matching for the first one or two arguments; they
will be the most commonly used, and most readers will know what they are. Avoid using
positional matching for less commonly used arguments, and only use readable abbreviations
with partial matching. (If you are writing code for a package that you want to publish on
CRAN you can not use partial matching, and must use complete names.) Named arguments
should always come after unnamed arguments. If a function uses ... (discussed in more detail
below), you can only specify arguments listed after ... with their full name.

These are good calls:

mean(1:10)

mean(1:10, trim =0.05)

This is probably overkill:

mean(x =1:10)

And these are just confusing:

mean(1:10, n = T)

mean(1:10, , FALSE)

mean(1:10, 0.05)

Centre for Distance Education 9.12 Acharya Nagarjuna University

mean(, TRUE, x =c(1:10, NA))

Calling a function given a list of arguments

Suppose you had a list of function arguments:

args <-list(1:10, na.rm =TRUE)

How could you then send that list to mean()? You need do.call():

do.call(mean, args)

[1] 5.5

Equivalent to

mean(1:10, na.rm =TRUE)

[1] 5.5

Default and missing arguments

Function arguments in R can have default values.

f <-function(a =1, b =2) {

c(a, b)

}

f()

[1] 1 2

Since arguments in R are evaluated lazily (more on that below), the default value can be
defined in terms of other arguments:

g <-function(a =1, b = a *2) {

c(a, b)

}

g()

[1] 1 2

g(10)

[1] 10 20

Default arguments can even be defined in terms of variables created within the function. This
is used frequently in base R functions, but I think it is bad practice, because you can’t
understand what the default values will be without reading the complete source code.

Statistical Computing Using R 9.13 R-Functions

h <-function(a =1, b = d) {

d <-(a +1) ^2

c(a, b)

}

h()

[1] 1 4

h(10)

[1] 10 121

You can determine if an argument was supplied or not with the missing() function.

i <-function(a, b) {

c(missing(a), missing(b))

}

i()

[1] TRUE TRUE

i(a =1)

[1] FALSE TRUE

i(b =2)

[1] TRUE FALSE

i(1, 2)

[1] FALSE FALSE

Sometimes you want to add a non-trivial default value, which might take several lines of code
to compute. Instead of inserting that code in the function definition, you could
use missing() to conditionally compute it if needed. However, this makes it hard to know
which arguments are required and which are optional without carefully reading the
documentation. Instead, I usually set the default value to NULL and use is.null() to check if
the argument was supplied.

9.7 R CODES FOR SMALL STANDARD STATISTICAL PROBLEMS :

#R-code for finding arithmetic mean, standard deviation (SD), coefficient of variation
(CV)

cat ("\n enter sample values:");

S=scan();

n=length(S);

mean=0;SD=0;

Centre for Distance Education 9.14 Acharya Nagarjuna University

for(x in S)

{

mean=mean+x;SD=SD+x*x;

mean=mean/n;

SD=SD/n-mean*mean;

SD=sqrt(SD);

CV=100*SD/mean;

cat("mean of the given sample=",mean);

cat("\n SD of the given sample=",SD);

cat("\n CV of the given sample=",CV);

}

Output:

enter sample values:1: 2

2: 4

3: 6

4: 8

5: 11

6: 19

7: 22

8: 28

9:

Read 8 items

mean of the given sample= 12.5

 SD of the given sample= 8.803408

 CV of the given sample= 70.42727

#R-code for obtaining Range and Median

cat("\n Enter sample:");

x=scan();

n=length(x);

Statistical Computing Using R 9.15 R-Functions

for(i in 1:(n-1))for(j in (i+1):n)if(x[i]>x[j]){t=x[i];x[i]=x[j];x[j]=t;}

print("sorted sample:");print(x);

if(n%%2==0)median=(x[n/2]+x[n/2+1])/2 else median=x[(n+1)/2]

cat("\n median of the given sample=",median);

cat("\n Range of the given sample=",x[n]-x[1]);

cat("\n\n");

Output:

Enter sample: 1: 2

2: 4

3: 6

4: 8

5: 11

6: 19

7: 22

8: 28

Read 8 items

[1] "sorted sample:"

[1] 2 4 6 8 11 19 22 28

 median of the given sample= 9.5

 Range of the given sample= 26

#R program for Correlation coefficient of given bivariate sample

cat("\n Enter sample x:");

x=scan();

cat("\n Enter sample y:");

y=scan();

#x=rnorm(30);

#y=rnorm(30);

n=length(x);

#demonstration of for loop

Centre for Distance Education 9.16 Acharya Nagarjuna University

mx=my=0;

sxx=syy=sxy=0;#i=1;

for(i in 1:n){mx=mx+x[i];my=my+y[i];

sxx=sxx+x[i]*x[i];syy=syy+y[i]*y[i];

sxy=sxy+x[i]*y[i];}

mx=mx/n;my=my/n;

vx=sxx/n-mx*mx;

vy=syy/n-my*my;cov=sxy/n-mx*my;

r=cov/sqrt(vx*vy);

cat("\n Covariance of x&Y=",cov);

cat("\n correlation of the given data=",r);

cat("\n\n");

Output:

Enter sample x: 1: 2

2: 4

3: 6

4: 8

Read 4 items

 Enter sample y: 1: 3

2: 5

3: 7

4: 9

Read 4 items

 Covariance of x &y = 5

 correlation of the given data= 1

#R- program for one sample t-test

cat("\n Enter sample:");x=scan();

cat("\n population mean mu0=");mu0=scan();

n=length(x);

Statistical Computing Using R 9.17 R-Functions

#demonstration of for loop

mean=s=0;

for(x in X){mean=mean+x;s=s+x*x;}

mean=mean/n;s=s-n*mean**2;

s=sqrt(s/(n-1));

t=(mean-mu0)/s*sqrt(n);

cat("\n mean=",mean);

cat("\n s=",s);cat("\n mu0=",mu0);

cat("\n t-critical value (at 5% LOS)=",qt(0.975,n-1));cat("DF=",n-1);

cat("\n\n t value based on one sample=",t);

if(abs(t)<qt(0.975,n-1))cat("\n\n The given has been drawn from the Normal population with
mean=",mu0) else cat("The given sample has not been drawn from the Normal population
with mean=",mu0)

cat("\n\n");

Output:

Enter sample: 1: 36

2: 37

3: 37

4: 40

5: 41

6: 42

7: 43

8: 44

9: 46

10: 47

11: 48

12: 48

13: 51

14: 52

15: 53

Centre for Distance Education 9.18 Acharya Nagarjuna University

16: 59

17: 55

18: 55

19: 56

20: 60

Read 20 items

 population mean mu0=1: 47.5

Read 1 item

 mean= 3.9

 s= 4.266146

 mu0= 47.5

 t- critical value (at 5% LOS)= 2.093024DF= 19

 t value based on one sample= -45.70522

The given sample has not been drawn from the Normal population with mean= 47.5

9.8 APPLY FUNCTIONS:

The apply family of functions in R(e.g.,apply, lapply, sapply, tapply etc.) allows for
streamlined operations over various data structures. To perform group-wise manipulation
using these functions, you often work with data frames or lists, grouping your data by a
particular column or criteria.

Common scenario for Group manipulations using apply family of functions given below:

 9.8.1 apply()

The apply function is extremely useful for manipulating grouped data within matrices or
arrays. It works by applying a function to rows or columns of a matrix, or over dimensions
of a multi-dimensional array. For instance, if you have a matrix of data where rows
represent individuals and columns represent different variables, you can use apply to
compute statistics (like mean or sum) for each row or column. This eliminates the need for
cumbersome loops, streamlining your code. One limitation, however, is that apply is
primarily suited for homogeneous data structures. When working with grouped data, you
can reshape the data into an array and process groups using the desired dimension
(MARGIN = 1 for rows, MARGIN = 2 for columns). For advanced group manipulation,
combining apply with other tools like split can provide

even more flexibility.

Syntax:

apply(X, MARGIN, FUN, ...)

Statistical Computing Using R 9.19 R-Functions

o X: The matrix or array.

o MARGIN: 1 for rows, 2 for columns.

o FUN: The function to apply.

o ...: Additional arguments to the function.
Example:

data=matrix(1:12,4,byrow=T)

data

[,1] [,2] [,3]

[1,] 1 2 3

[2,] 4 5 6

[3,] 7 8 9

[4,] 10 11 12

apply(data,1,sum)

[1] 6 15 24 33

apply(data,2,sum)

[1] 22 26 30

In this example by using the apply() function to perform the various statistical functions for
different dimensions. Here we use sum() for the matrix shows the sum of each row elements
for MARGIN=1 and each column elements for MARGIN=2.

9.8.2 sapply()

sapply is a simplified version of lapply that is ideal for grouped data when you want the
output in a more compact form, such as a vector or matrix. This function applies a
specified function over a vector or list of grouped data, trying to simplify the results
automatically. For instance, in data analysis, if you have a list of numeric vectors (each
representing a group), you can use sapply to calculate the mean, variance, or other
summary statistics for each group.

The function adapts well to grouped data because it handles vectors or lists easily,
converting them into a unified output format. However, for more complex group structures,
sapply might fail to simplify the output as expected.

Syntax:

lapply(X, FUN, ...)

o X: A list or vector.

o FUN: The function to apply.

Centre for Distance Education 9.20 Acharya Nagarjuna University

Example:

data()

D=women

D

height weight

1 58 115

2 59 117

3 60 120

4 61 123

5 62 126

6 63 129

7 64 132

8 65 135

9 66 139

10 67 142

11 68 146

12 69 150

13 70 154

14 71 159

15 72 164

sapply(D,mean) height weight 65.0000 136.7333
Generally, in R there are so many data sets are stored. We can use those data sets to perform
the statistical computations by using sapply() function.

In this example, the output will print like this i.e., average of the heights and weights for the
given data. In this example the output will be in horizontal values.

9.8.3 lapply()

lapply is especially powerful for handling grouped data stored in lists. It applies a function
to each element of a list (or vector) and always returns a list as output. This is particularly
useful for working with grouped datasets where each group is represented as a separate list
element. For example, you can use lapply to clean, transform, or analyze data within each
group independently. Its flexibility allows it to handle groups of varying sizes and
structures without assuming any simplification, making it ideal for more complex or nested
data manipulation tasks.

Statistical Computing Using R 9.21 R-Functions

Syntax:

lapply(X, function,..., simplify = TRUE)

o simplify = TRUE: Attempts to simplify output.

Example:

From the example of sapply function

lapply(D,sd)

$height

[1] 4.472136

$weight

[1] 15.49869

Here also we use those data sets to perform the computations by using lapply()function.

9.8.4 tapply()

tapply is uniquely designed for grouped data manipulation and is one of the most
intuitive functions for this purpose. It splits a vector into groups based on a factor (or
multiple factors) and applies a function to each group. This makes it invaluable for
summarizing data by categories, such as computing group means, medians, or counts.
Unlike apply, tapply handles vectors rather than matrices and allows for more direct
grouping operations. It's commonly used in exploratory data analysis, where summarizing
data by groups is a frequent task. One drawback is that it may produce outputs as arrays,
which might require additional formatting for further analysis.

Syntax:

tapply(X, INDEX, function, ...)

o X: The vector to split.

o INDEX: A factor or list of factors.

o function: The function to apply.

Example:1

x=matrix(sample(1:100,45),5,9)

x
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]

[1,] 60 43 93 63 2 71 6 49 1

[2,] 62 30 34 46 72 79 40 35 5

[3,] 80 61 57 78 75 59 82 67 96

[4,] 9 74 38 70 21 37 28 47 99

Centre for Distance Education 9.22 Acharya Nagarjuna University

[5,] 11 55 84 18 88 91 32 20 90

Example:2

x <- c(1, 2, 3, 4, 5, 6)

group <- c("A", "A", "B", "B", "C", "C")

tapply(x, group, mean) # apply mean function to each subset

Output:

 A B C
 1.5 3.5 5.5

9.9 SUMMARY:

Mastering R's built-in functions, scoping rules, and the apply family of functions is essential
for efficient data manipulation, statistical analysis, and writing reliable code. These concepts
form the foundation for solving complex data analysis tasks and developing robust statistical
models in R.

9.10 SELF ASSESSMENT QUESTIONS:

1. What are built-in functions in R? Give two examples.
2. Explain the role of mathematical and string manipulation functions in R with

examples.
3. What is the purpose of the diff() function? Write a sample R code demonstrating its

use.
4. How does the length() function work in R? Provide an example.
5. List any four statistical functions in R and explain their use.
6. What is an environment in R? How does it affect variable searching in a function?
7. Explain the concept of a one-argument function with an example.
8. How are functions called in R? Write an example to call the sqrt() function.
9. Write R code to find the median of a dataset.
10. Differentiate between apply(), sapply(), lapply(), and tapply() functions in R.

9.11 SUGGESTED READINGS:

1) Dr. Mark Gardener (2012): Beginning R – The Statistical Programming Language,

2) Wiley India Pvt Ltd.
3) W. N. Venables and D. M. Smith(2016): An Introduction to R
4) J.P. Lander(2014):R for Everyone, Pearson Publications

5) Garrett Grolemund : Hands-On Programming with R

6) Michael J. Crawley: The R Book

 Dr. SYED JILANI

LESSON-10

PROBABILITY DISTRIBUTIONS IN R

OBJECTIVES:

After studying this unit, you should be able to:

 Understand the importance of Probability distribution in R
 Students should have a solid understanding about the Generating samples
 .To know the concepts of Bulit-in R- functions
 To acquire knowledge about PDF and CDF for the ditributions

STRUCTURE:

10.1 Binomial distribution

10.2 Poisson distribution

10.3 Normal distribution

10.4 Exponential distribution

10.5 Weibull distribution

10.6 Logistic distribution

10.7 Conclusion

10.8 Self Assessment Questions

10.9 Further Readings

10.1 BINOMIAL DISTRIBUTION:

Introduction: The Binomial Distribution is a discrete probability distribution representing
the number of successes in a fixed number of independent Bernoulli trials, each having the
same probability of success.

A binomially distributed random variable follows:

where:

 = number of trials

 = probability of success in each trial

Probability mass function (PMF): The Probability Mass Function (PMF) is given by:

Centre for Distance Education 10.2 Acharya Nagarjuna University

where is the binomial coefficient.

Cumulative distribution function (CDF): The Cumulative Distribution Function (CDF)

gives the probability that takes a value less than or equal to a given value:

Procedure in R: R provides built-in functions to work with the binomial distribution:

Function Description

dbinom(x, size, prob) Computes the probability mass function (PMF).

pbinom(q, size, prob) Computes the cumulative probability (CDF).

qbinom(p, size, prob) Computes the quantile function (inverse CDF).

rbinom(n, size, prob) Generates random samples from a binomial distribution.

Example in R:

Set parameters for the binomial distribution
n <- 10 # Number of trials
p <- 0.5 # Probability of success

1. Compute PMF (Probability Mass Function)
x_values <- 0:n # Possible outcomes
pmf_values <- dbinom(x_values, size=n, prob=p)
print(pmf_values)

2. Compute CDF (Cumulative Probability)
cdf_values <- pbinom(x_values, size=n, prob=p)
print(cdf_values)

3. Compute Quantile Function
quantile_value <- qbinom(0.5, size=n, prob=p) # 50th percentile
print(quantile_value)

4. Generate Random Samples

Statistical Computing Using R 10.3 Probability distributions in R

random_samples <- rbinom(1000, size=n, prob=p) # Generate 1000 samples
print(head(random_samples))

5. Plot PMF (Probability Density Curve)
barplot(pmf_values, names.arg=x_values, col="skyblue", main="Binomial PMF", xlab="x",
ylab="P(X=x)")

6. Plot CDF (Cumulative Density Curve)

plot(x_values, cdf_values, type="s", col="red", lwd=2, main="Binomial CDF", xlab="x",
ylab="P(X ≤ x)")

Explanation:

1. PMF Calculation: The dbinom() function calculates probabilities for each possible
outcome in the binomial distribution.

2. CDF Calculation: The pbinom() function calculates cumulative probabilities.

3. Quantile Calculation: The qbinom() function determines the smallest such that

 is at least a given probability.

Centre for Distance Education 10.4 Acharya Nagarjuna University

4. Random Sampling: The rbinom() function generates random numbers from the
binomial distribution.

5. PMF Plot: The barplot() function is used to visualize the probability distribution.

6. CDF Plot: The plot() function is used to draw the cumulative distribution function as
a step function.

Conclusion:

 The binomial distribution is useful for modeling the number of successes in a fixed
number of trials.

 R provides built-in functions to compute probabilities, cumulative probabilities,
quantiles, and generate random samples.

 Visualizing PMF and CDF helps in understanding the distribution.

10.2 POISSON DISTRIBUTION:

Introduction: The Poisson distribution is a discrete probability distribution that expresses the
probability of a given number of events occurring in a fixed interval of time or space if these
events occur with a known constant mean rate and independently of the time since the last
event.

Probability mass function (PMF): The probability of observing events in an interval is
given by:

where:

 (lambda) is the expected number of occurrences in the given interval (mean rate),

 is Euler’s number (~2.71828).

Estimating lambda value: The value of (mean rate of occurrences) can be estimated from
real-world data using:

Example: Suppose a call center receives 50 calls in 10 hours. The estimated is:

Cumulative distribution function (CDF): The CDF gives the probability of obtaining at

most occurrences:

Statistical Computing Using R 10.5 Probability distributions in R

Quantile function: The quantile function finds the value of for which the probability

 is equal to a given probability .

Generating random samples: Random numbers following a Poisson distribution can be
generated to simulate real-world Poisson processes.

Procedure in R: In R, the Poisson distribution is handled using built-in functions:

Function Description

dpois(x, lambda) Computes the PMF (probability mass function) at .

ppois(x, lambda) Computes the CDF (cumulative probability) at .

qpois(p, lambda) Computes the quantile function (inverse CDF).

rpois(n, lambda) Generates random samples from a Poisson distribution.

Example implementation in R:

Set lambda (mean rate)
lambda <- 4

Define the range of x values
x_values <- 0:15

Compute PMF (Probability Mass Function)
pmf_values <- dpois(x_values, lambda)

pmf_values

Compute CDF (Cumulative Distribution Function)
cdf_values <- ppois(x_values, lambda)

Generate 1000 random samples from Poisson distribution
set.seed(123) # For reproducibility
random_samples <- rpois(1000, lambda)

Plot the PMF
barplot(pmf_values, names.arg = x_values, col = "skyblue",

Centre for Distance Education 10.6 Acharya Nagarjuna University

 main = "Poisson Distribution (PMF)", xlab = "x", ylab = "P(X = x)")

Plot the CDF
plot(x_values, cdf_values, type = "s", col = "red", lwd = 2,
 main = "Cumulative Distribution Function (CDF)",
 xlab = "x", ylab = "P(X \u2264 x)")

Histogram of generated samples
hist(random_samples, breaks = 20, col = "lightgreen", probability = TRUE,
 main = "Histogram of Random Samples from Poisson Distribution",
 xlab = "x", ylab = "Density")
Overlay PMF on the histogram
lines(x_values, dpois(x_values, lambda), type = "p", col = "blue", pch = 16)

Statistical Computing Using R 10.7 Probability distributions in R

Explanation of the code:

1. Define lambda: Set the Poisson parameter .

2. Compute PMF: Use dpois() to get probability values for given .
3. Compute CDF: Use ppois() to get cumulative probabilities.
4. Generate random samples: Use rpois() to generate 1000 values.
5. Plot PMF: A bar chart is created using barplot().
6. Plot CDF: A step plot is drawn using plot() with type = "s".
7. Plot Histogram: A histogram of generated samples is overlaid with theoretical PMF.

Conclusion:

 The Poisson distribution is useful for modeling the count of occurrences over a fixed
interval.

 R provides built-in functions for computing probabilities, cumulative probabilities,
quantiles, and generating random samples.

 Visualizing PMF and CDF helps understand the distribution.

10.3 NORMAL DISTRIBUTION:

Introduction: The Normal Distribution is one of the most widely used probability
distributions in statistics. It is a continuous probability distribution, defined by its mean (µ)
and standard deviation (σ). The Normal Distribution is symmetric about its mean, meaning
the left and right sides of the graph are mirror images of each other. It is described by the
probability density function (PDF) as:

Where:

Centre for Distance Education 10.8 Acharya Nagarjuna University

 is the mean of the distribution,

 is the standard deviation,

 is the base of the natural logarithm.

Built-in R functions for Normal Distribution:

R provides several built-in functions to work with the Normal Distribution:

1. dnorm(x, mean, sd): Computes the probability density function (PDF) of the
Normal Distribution for the given x value.

2. pnorm(q, mean, sd): Computes the cumulative distribution function (CDF) for the
given quantile q.

3. qnorm(p, mean, sd): Computes the quantile for the given cumulative probability p.

4. rnorm(n, mean, sd): Generates n random samples from a Normal Distribution with
specified mean and sd.

Computing PDF, CDF, and Quantiles:

To compute the PDF, CDF, and Quantiles, we use the following functions:

 PDF: The dnorm() function calculates the value of the probability density for a given
point x. Example:

 # Compute PDF for x = 1, mean = 0, sd = 1
dnorm(1, mean = 0, sd = 1)

 CDF: The pnorm() function calculates the cumulative probability up to a given
quantile q. Example:

 # Compute CDF for q = 1, mean = 0, sd = 1
pnorm(1, mean = 0, sd = 1)

 Quantiles: The qnorm() function computes the quantile value for a given cumulative
probability p. Example:

 # Compute quantile for p = 0.95, mean = 0, sd = 1
qnorm(0.95, mean = 0, sd = 1)

Statistical Computing Using R 10.9 Probability distributions in R

Generating samples:

To generate random samples from a Normal Distribution, we use the rnorm()
function. It takes the number of samples, the mean, and the standard deviation as input:

Generate 100 random samples from a Normal Distribution with mean = 0, sd = 1
samples <- rnorm(100, mean = 0, sd = 1)

Plotting Density and Cumulative Density Curves:

R also provides functions to visually represent the Density Curve and the Cumulative
Density Curve for the Normal Distribution:

 Density Plot: The plot() function along with dnorm() can be used to plot the density
of the Normal Distribution.

 Example:

 # Plot the Normal Density Curve for mean = 0, sd = 1
x <- seq(-5, 5, by = 0.1)
y <- dnorm(x, mean = 0, sd = 1)
plot(x, y, type = "l", main = "Normal Distribution Density Curve", ylab = "Density",
xlab = "x")

 Cumulative Density Plot: To plot the cumulative density, use pnorm():

 Example:

 # Plot the Cumulative Density Curve for mean = 0, sd = 1
y_cdf <- pnorm(x, mean = 0, sd = 1)
plot(x, y_cdf, type = "l", main = "Normal Distribution Cumulative Density Curve",
ylab = "Cumulative Probability", xlab = "x")

Centre for Distance Education 10.10 Acharya Nagarjuna University

10.4 EXPONENTIAL DISTRIBUTION:

Introduction:

The Exponential distribution is widely used to model the time between independent
events that occur at a constant average rate. It is a continuous probability distribution with a
single parameter, λ (lambda), which represents the rate of occurrence.

Mathematically, the Probability Density Function (PDF) of an exponential distribution is
given by:

The Cumulative Distribution Function (CDF) is given by:

The mean of an exponential distribution is 1/λ, and the variance is 1/λ².

Exponential Distribution using R-software:

R provides built-in functions to compute various properties of the exponential distribution:

 dexp(x, rate = λ) → Computes the Probability Density Function (PDF).
 pexp(x, rate = λ) → Computes the Cumulative Distribution Function (CDF).
 qexp(p, rate = λ) → Computes the Quantile Function (inverse CDF).
 rexp(n, rate = λ) → Generates random samples from an exponential distribution.

Estimating the Rate Parameter (Λ) for an Exponential Distribution:

The rate parameter (λ) in an Exponential Distribution represents the average rate

at which events occur. It is the reciprocal of the mean ().

Statistical Computing Using R 10.11 Probability distributions in R

Methods to estimate λ:

Using the sample mean
o The Maximum Likelihood Estimator (MLE) for λ is:

 where is the sample mean.
Using the method of moments

o Since the expected value of an exponential distribution is , we
estimate λ as:

Estimating Λ in R with an example:

Step 1: Generate Sample Data

We generate a random sample from an Exponential Distribution with a known λ and
then estimate it.

Set seed for reproducibility
set.seed(123)

Generate 20 random samples from an exponential distribution with λ = 2
true_lambda <- 2
sample_data <- rexp(20, rate = true_lambda)

Display the sample data
sample_data

Step 2: Estimate λ Using the Sample Mean
Compute the sample mean
sample_mean <- mean(sample_data)

Estimate lambda as 1/sample_mean
estimated_lambda <- 1 / sample_mean

Display the estimated lambda
estimated_lambda

Step 3: Compare Estimated λ with True λ
cat("True lambda:", true_lambda, "\nEstimated lambda:", estimated_lambda)

Interpretation

 The estimated λ should be close to the true value (2 in this example), but it may vary
due to randomness.

 As the sample size increases, the estimate becomes more accurate.

Centre for Distance Education 10.12 Acharya Nagarjuna University

Conclusion:

We estimated λ (rate parameter) using the MLE method by computing
1/mean(sample data). This method is simple and effective for determining the rate of
occurrence of events in an Exponential Distribution.

Computing PDF, CDF, Quantile and Random Sampling in R:

1. Computing Probability Density Function (PDF)

The PDF gives the likelihood of observing a particular value in an exponential distribution.

R Code:
Define rate parameter (λ)
lambda <- 2

Compute PDF for a range of x values
x_values <- seq(0, 2, by = 0.1)
pdf_values <- dexp(x_values, rate = lambda)

pdf_values

Display the computed PDF values
data.frame(x_values, pdf_values)

Statistical Computing Using R 10.13 Probability distributions in R

2. Computing Cumulative Distribution Function (CDF)

The CDF gives the probability that a random variable is less than or equal to a given value.

R Code:
Compute CDF values for the same x_values
cdf_values <- pexp(x_values, rate = lambda)

Display computed CDF values
data.frame(x_values, cdf_values)

3. Computing Quantiles

The Quantile function gives the value corresponding to a given cumulative probability.

R Code:
Compute quantiles for given probabilities
probabilities <- c(0.1, 0.25, 0.5, 0.75, 0.9)
quantiles <- qexp(probabilities, rate = lambda)

Display computed quantiles
data.frame(probabilities, quantiles)

Centre for Distance Education 10.14 Acharya Nagarjuna University

4. Generating Random Samples

We can generate random samples from an Exponential distribution using rexp().

R Code:
Generate 10 random samples from exponential distribution
set.seed(123) # Set seed for reproducibility
random_samples <- rexp(10, rate = lambda)

Display the generated random samples
random_samples

Plotting Density and Cumulative Density Curves:

1. Plotting the PDF (Density Curve)

To visualize the Probability Density Function, we can use the plot() function.

R Code:
Plot the Exponential PDF
plot(x_values, pdf_values, type = "l", col = "blue", lwd = 2,
 main = "Exponential Distribution - PDF",
 xlab = "x", ylab = "Density")

2. Plotting The CDF (Cumulative Density Curve)

To visualize the Cumulative Distribution Function, we plot the CDF values.

R Code:
Plot the Exponential CDF
plot(x_values, cdf_values, type = "l", col = "red", lwd = 2,
 main = "Exponential Distribution - CDF",
 xlab = "x", ylab = "Cumulative Probability")

Statistical Computing Using R 10.15 Probability distributions in R

Conclusion:

This lesson covered the Exponential Distribution, its properties, and how to
compute PDF, CDF, quantiles, and generate random samples in R. We also demonstrated
how to plot density and cumulative density curves for better visualization.

By understanding and applying these concepts, we can model and analyze time-to-
event data effectively using R.

10.5 WEIBULL DISTRIBUTION:

Introduction: The Weibull distribution is a continuous probability distribution used in
reliability analysis, life data analysis, and survival analysis. It is characterized by two
parameters:

1. Shape parameter (k or shape) – Determines the shape of the distribution.

2. Scale parameter (or scale) – Stretches or compresses the distribution.

The probability density function (PDF) of a Weibull distribution is given by:

The cumulative distribution function (CDF) is:

The quantile function is the inverse of the CDF.

Setting Weibull Shape and Scale Parameters in R:

Manually defining Weibull parameters: If the shape (k) and scale (λ) parameters are
already known, they can be assigned directly in R:

shape_param <- 2 # Shape parameter (k)
scale_param <- 5 # Scale parameter (λ)

Estimating Weibull parameters from data: If data is available, the Weibull parameters can
be estimated using the fitdistrplus package.

Centre for Distance Education 10.16 Acharya Nagarjuna University

Step 1: Install and load necessary libraries

install.packages("fitdistrplus") # Install package if not already installed
library(fitdistrplus)

Step 2: Generate sample data from a Weibull Distribution

set.seed(123) # For reproducibility
data <- rweibull(100, shape = 2, scale = 5) # Simulating data

Step 3: Fit Weibull Distribution to the data

fit <- fitdist(data, "weibull")
summary(fit)

Output: The summary(fit) command will display the estimated shape and scale parameters
based on the provided data.

Using SurvivalPackage: Another method to estimate Weibull parameters is by using the
survival package:

install.packages("survival")
library(survival)

weibull_model <- survreg(Surv(data) ~ 1, dist = "weibull")
summary(weibull_model)

The summary(weibull_model) function provides the estimated parameters based on survival
analysis techniques.

Statistical Computing Using R 10.17 Probability distributions in R

Conclusion:

This lesson demonstrated how to manually define and estimate Weibull distribution
parameters in R using statistical tools. Understanding these concepts is essential for
applications in reliability engineering and survival analysis.

Procedure in R:
R provides built-in functions to work with the Weibull distribution:

Function Description

dweibull(x, shape, scale) Computes the probability density function (PDF).

pweibull(x, shape, scale) Computes the cumulative distribution function (CDF).

qweibull(p, shape, scale) Computes the quantile function (inverse of CDF).

rweibull(n, shape, scale) Generates random samples from a Weibull distribution.

Brief example to get Location () and Scale () parameters

To estimate the location and scale parameters from a given dataset, we can use the fitdistr
function from the MASS package in R.

Load required package
library(MASS)

Generate a sample dataset
set.seed(123)
data <- rlogis(100, location = 5, scale = 2)

Estimate parameters
fit <- fitdistr(data, "logistic")
print(fit)

This will output estimates for the location () and scale () parameters based on the given
dataset.

Example in R:

Set Weibull distribution parameters
shape_param <- 2 # Shape parameter (k)
scale_param <- 3 # Scale parameter (lambda)

Define x values for plotting
x_vals <- seq(0, 10, length.out = 100)

Compute PDF and CDF values
pdf_vals <- dweibull(x_vals, shape = shape_param, scale = scale_param)

Centre for Distance Education 10.18 Acharya Nagarjuna University

cdf_vals <- pweibull(x_vals, shape = shape_param, scale = scale_param)

Generate random samples
set.seed(123) # For reproducibility
samples <- rweibull(1000, shape = shape_param, scale = scale_param)

Plot PDF (Density Curve)
plot(x_vals, pdf_vals, type = "l", col = "blue", lwd = 2,
 main = "Weibull Probability Density Function",
 xlab = "x", ylab = "Density")
grid()

Plot CDF (Cumulative Density Curve)
plot(x_vals, cdf_vals, type = "l", col = "red", lwd = 2,
 main = "Weibull Cumulative Distribution Function",
 xlab = "x", ylab = "Cumulative Probability")
grid()

Histogram of generated samples
hist(samples, probability = TRUE, col = "lightblue",
 main = "Histogram of Weibull Random Samples",
 xlab = "x", ylab = "Density")
lines(density(samples), col = "darkblue", lwd = 2) # Overlay density curve
grid()

Statistical Computing Using R 10.19 Probability distributions in R

Explanation of the code:

1. Setting parameters: The Weibull shape and scale parameters are defined.
2. Computing PDF & CDF: The dweibull() and pweibull() functions calculate density

and cumulative probabilities.
3. Generating random samples: The rweibull() function generates random samples.
4. Plotting:

o The PDF is plotted using plot().
o The CDF is plotted similarly.
o A Histogram of random samples is plotted along with a density curve.

This approach provides a comprehensive analysis of the Weibull distribution using R.

10.6 LOGISTIC DISTRIBUTION:

Theory:

The logistic distribution is a continuous probability distribution used in logistic
regression and survival analysis. It has:

 Location parameter (): Determines center.

 Scale parameter (): Controls spread.

The PDF is:

The CDF is:

R functions:

Centre for Distance Education 10.20 Acharya Nagarjuna University

 dlogis(x, location, scale) for PDF.
 plogis(q, location, scale) for CDF.
 qlogis(p, location, scale) for quantiles.
 rlogis(n, location, scale) for random samples.

Procedure:

1. Computing PDF

pdf_value <- dlogis(1, location = 0, scale = 1)
print(pdf_value)

2. Computing CDF

cdf_value <- plogis(1, location = 0, scale = 1)
print(cdf_value)

3. Computing Quantiles

quantile_value <- qlogis(0.95, location = 0, scale = 1)
print(quantile_value)

4. Generating random samples

random_samples <- rlogis(10, location = 0, scale = 1)
print(random_samples)

5. Plotting PDF and CDF

x_values <- seq(-5, 5, by = 0.1)
plot(x_values, dlogis(x_values, location = 0, scale = 1), type = "l", col = "blue", lwd = 2,
 xlab = "X", ylab = "Density", main = "PDF of Logistic Distribution")

plot(x_values, plogis(x_values, location = 0, scale = 1), type = "l", col = "red", lwd = 2,
 xlab = "X", ylab = "Cumulative Probability", main = "CDF of Logistic Distribution")

Statistical Computing Using R 10.21 Probability distributions in R

10.7 CONCLUSION:

This probability distribution serves a unique purpose in statistical modeling and real-world
applications.

10.8 SELF ASSESSMENT QUESTIONS:

1. In R, write a code to compute the probability of obtaining at most 4 heads in 8 coin
tosses (p=0.5)

2. Write an R script to compute the probability of 5 calls arriving in an hour when the
average rate is 3 calls per hour.

3. How do you standardize a normal variable? Demonstrate in R with mean=50, sd=10,
and x=60.

4. In R, simulate 100 random values from an exponential distribution with λ=0.5 and
plot a histogram

5. Write an R script to generate 500 random values from Weibull(1.5, 2) and plot the
histogram.

6. Write an R script to simulate 1000 values from a logistic distribution with μ=2,
s=1.5 and plot the density curve.

10.9 FURTHER READINGS:

1) Dr. Mark Gardener (2012): Beginning R – The Statistical Programming Language,

2) Wiley India Pvt Ltd.
3) W. N. Venables and D. M. Smith(2016): An Introduction to R

4) J.P. Lander(2014):R for Everyone, Pearson Publications

5) Garrett Grolemund : Hands-On Programming with R

6) Michael J. Crawley: The R Book

Dr. D. Ramesh

 LESSON -11

STATISTICAL TESTS IN R

OBJECTIVES:

After studying this unit, you should be able to:

 Understand the importance of includes performing and interpreting the Shapiro-Wilk
test for normality

 Students should have a solid understanding about fundamental concepts and
applications of various statistical tests in R

 .To know the concepts of Chi-Square tests for association and goodness of fit
 To acquire knowledge about practical skills will be developed to apply these tests

effectively in real-world data analysis.

STRUCTURE:

11.1 Introduction

11.2 Shapiro-Wilk test

11.3 Kolmogorov-Smirnov test

11.4 Wilcoxon Mann-Whitney test

11.5 Chi-Square tests for association

11.6 Chi-Square tests for goodness of fit

11.7 Conclusion

11.8 Self Assessment Questions

11.9 Further Readings

11.1 INTRODUCTION:

Statistical tests are vital tools used in inferential statistics to make decisions or
inferences about a population based on sample data. In this lesson, we will explore different
statistical tests in R software, including the Shapiro-Wilk test, Kolmogorov-Smirnov test,
Wilcoxon Mann-Whitney test, and Chi-Square tests. Each test will be explained with
theory followed by a step-by-step analysis using R.

11.2 SHAPIRO-WILK TEST FOR NORMALITY:

The Shapiro-Wilk test is a test of normality that assesses whether a sample comes
from a normally distributed population. It is widely used because of its power and accuracy.
The null hypothesis for this test is that the data is normally distributed.

Hypothesis
 Null hypothesis (H₀): The data is normally distributed.
 Alternative hypothesis (H₁): The data is not normally distributed.

Steps in R
1. Install necessary package:

Center for Distance Education 11.2 Acharya Nagarjuna University

 install.packages("stats")

2. Perform the Shapiro-Wilk test:

 data <- c(2.3, 3.1, 2.8, 3.5, 3.2) # Sample data
shapiro.test(data) # Perform the test

3. Interpret the output: The p-value will be outputted. If the p-value is less than 0.05,
reject the null hypothesis, suggesting that the data is not normally distributed.

11.3 KOLMOGOROV-SMIRNOV TEST:

Theory:

The Kolmogorov-Smirnov (KS) test compares a sample with a reference probability
distribution (one-sample) or compares two samples to assess if they come from the same
distribution (two-sample).

Hypothesis
 Null hypothesis (H₀): The data follows the reference distribution (or both samples

come from the same distribution).

 Alternative hypothesis (H₁): The data does not follow the reference distribution (or
the samples come from different distributions).

One-Sample KStest in R:
1. Perform the one-sample KS test:

 data <- c(1.2, 2.3, 2.8, 3.5, 3.7) # Sample data
ks.test(data, "pnorm", mean(data), sd(data)) # Compare to normal distribution

2. Interpret the output: If the p-value is less than 0.05, the null hypothesis is rejected.

Two-Sample KStest in R
1. Perform the two-sample KS test:

Statistical Computing Using R 11.3 Statistical tests in R

 data1 <- c(1.2, 2.5, 3.1, 3.9, 4.2)
data2 <- c(0.9, 1.8, 2.3, 2.8, 3.0)
ks.test(data1, data2) # Compare two samples

2. Interpret the output: If the p-value is less than 0.05, the samples are drawn from
different distributions.

11.4 WILCOXON MANN-WHITNEY TEST (U-TEST):

The Wilcoxon Mann-Whitney U-test is a non-parametric test used to compare
differences between two independent samples. It is used when the data is ordinal or not
normally distributed.

Hypothesis
 Null hypothesis (H₀): The distributions of both groups are the same.

 Alternative hypothesis (H₁): The distributions of the groups are different.

Steps in R
1. Perform the Mann-Whitney U test:

 group1 <- c(1.2, 2.3, 2.8)
group2 <- c(3.1, 3.5, 4.0)
wilcox.test(group1, group2) # Perform the test

2. Interpret the output: A p-value less than 0.05 suggests a significant difference
between the two groups.

11.5 CHI-SQUARE TEST FOR ASSOCIATION:

The Chi-Square test for association tests if there is a significant association between
two categorical variables. It compares observed frequencies to expected frequencies.

Center for Distance Education 11.4 Acharya Nagarjuna University

Hypothesis
 Null hypothesis (H₀): There is no association between the variables.
 Alternative hypothesis (H₁): There is an association between the variables.

Steps in R
1. Create the contingency table:

 table <- matrix(c(10, 20, 30, 40), nrow = 2, byrow = TRUE)
colnames(table) <- c("Category1", "Category2")
rownames(table) <- c("Group1", "Group2")

 table

2. Perform the Chi-Square test:

 chisq.test(table) # Test for association

3. Interpret the output: A p-value less than 0.05 indicates a significant association.

11.6 CHI-SQUARE TEST FOR GOODNESS OF FIT:

The Chi-Square test for goodness of fit is used to determine whether the observed
distribution of a categorical variable matches an expected distribution.

Hypothesis
 Null hypothesis (H₀): The observed distribution fits the expected distribution.
 Alternative hypothesis (H₁): The observed distribution does not fit the expected

distribution.

Steps in R
1. Perform the Chi-Square goodness of fit test:

 observed <- c(10, 20, 30)
expected <- c(15, 25, 20)
chisq.test(observed, p = expected/sum(expected)) # Perform the test

Statistical Computing Using R 11.5 Statistical tests in R

2. Interpret the output: A p-value less than 0.05 suggests a significant difference
between the observed and expected frequencies.

11.7 CONCLUSION:

Shapiro-Wilk Test is best for checking normality in small datasets.
Kolmogorov-Smirnov Test is useful for comparing distributions.
Wilcoxon Mann-Whitney Test is a non-parametric alternative to the t-test.
Chi-Square Test for Association determines relationships between categorical variables.
Chi-Square Test for Goodness of Fit checks how well observed data matches
expectations.

11.8 SELF ASSESSMENT QUESTIONS:

1. Explain the importance of the Shapiro-Wilk test.
2. Write an R script to check if a dataset of 100 randomly generated values from a

normal distribution follows normality.
3. When should the Shapiro-Wilk test not be used?
4. What is the difference between the Kolmogorov-Smirnov test and the Shapiro-Wilk

test?
5. Write an R program to compare two datasets using the KS test.
6. Write an R script to compare two independent samples using the Wilcoxon Mann-

Whitney test.
7. Write an R script to analyze whether gender and product preference are associated.
8. Write an R script to test if a given dataset follows an expected distribution.

11.9 FURTHER READINGS:

1) Dr. Mark Gardener (2012): Beginning R – The Statistical Programming Language,

2) Wiley India Pvt Ltd.
3) W. N. Venables and D. M. Smith(2016): An Introduction to R

4) J.P. Lander(2014):R for Everyone, Pearson Publications

5) Garrett Grolemund : Hands-On Programming with R

6) Michael J. Crawley: The R Book

Dr. D. Ramesh

LESSON -12

R-CODES FOR FITTING DISTRIBUTIONS

OBJECTIVES:

After studying this unit, you should be able to:

 Understand how to fit a binomial, poison, normal, exponential, Weibull and logistic
distribution to frequency data

 to assess whether the observed data fits the expected distribution
 .To know the concepts of conduct a chi-square test to assess whether the observed

data fits the expected distribution
 To acquire knowledge about solving of non-linear equations using Newton-Raphson

method in R was also covered.

STRUCTURE:

12.1 Fitting of Binomial distribution

12.2 Fitting of Poisson distribution

12.3 Fitting of Normal distribution

12.4 Fitting of Exponential distribution

12.5 Fitting of Weibull distribution

12.6 Fitting of Logistic distribution

12.7 Solving of non-linear equations

12.8 Conclusion

12.9 Self Assessment Questions

12.10 Further Readings

12.1 FITTING OF BINOMIAL DISTRIBUTION:

In this lesson, an attempt was made for binomial distribution fitting and test for
goodness of fit using a real-world example of tossing a coin. This process helps to understand
whether the number of heads observed in a series of coin tosses follows the expected pattern
based on the binomial distribution. Further, a chi-square test to also employed to evaluate the
goodness of fit.

Example question:

Suppose a fair coin is tossed for10 times and record the number of heads observed.
The following data shows the number of times heads appeared (successes) out of the 10
tosses:

Number of Heads (x) Frequency (f)

0 5

1 10

2 15

Center for Distance Education 12.2 Acharya Nagarjuna University

Number of Heads (x) Frequency (f)

3 20

4 25

5 15

6 10

7 5

8 3

9 2

Fit a binomial distribution to this data and perform a chi-square test for goodness of fit.

Steps in R Software:

Null Hypothesis (H): The data follows a binomial distribution with parameters and

.

Input the frequency data into R:

Number of heads (x)
x <- 0:10

Frequency of each number of heads (f)
f <- c(5, 10, 15, 20, 25, 15, 10, 5, 3, 2, 0)

Total number of observations
n_total <- sum(f)

Calculate the theoretical probabilities using the Binomial Distribution:

To compute the expected frequencies under the binomial distribution, the binomial
probability mass function was used here. For each possible number of heads (0 to 10),

possible probability was covered with using the parameters and .

Calculate binomial probabilities for each number of heads
probabilities <- dbinom(x, size = 10, prob = 0.5)

Calculate expected frequencies based on the probabilities
expected_frequencies <- probabilities * n_total

Statistical Computing Using R 12.3 R-codes for fitting distributions

 Chi-Square Goodness of Fit Test

Now, chi-square goodness of fit test was been applied to compare the observed
frequencies with the expected frequencies. The test statistic is calculated as:

where are the observed frequencies and are the expected frequencies.

Calculate the chi-square statistic
chi_square_stat <- sum((f - expected_frequencies)^2 / expected_frequencies)

Calculate the degrees of freedom (df = number of categories - 1 - parameters estimated)
df <- length(x) - 1 - 1 # 1 parameter (p) is estimated

Calculate the p-value using the chi-square distribution
p_value <- pchisq(chi_square_stat, df, lower.tail = FALSE)

Output the results
chi_square_stat
p_value

Interpret the results:

If the p-value of Chi-square Statistic is greater than 0.05, fail to reject the null
hypothesis, suggesting that the data follows a binomial distribution. If the p-value is less than
0.05, can reject the null hypothesis and conclude that the data does not follow a binomial
distribution.

Final thoughts:

By using the coin tossing example, it was demonstrated how to apply the binomial
distribution to frequency data and perform a chi-square goodness of fit test in R. This is a
useful technique for determining if observed data follows a binomial distribution.

Center for Distance Education 12.4 Acharya Nagarjuna University

12.2 FITTING OF POISSON DISTRIBUTION BASED ON FREQUENCY DATA
AND TEST FOR GOODNESS OF FIT:

Introduction:

In this lesson, Poisson distribution is applied for fitting and test for goodness of fit
using a real-world example. The Poisson distribution is often used to model count-based data
where events occur randomly over a fixed interval of time or space.

Example question:

The following data shows the number of arrivals and their corresponding frequencies:

Number of Customers (x) Frequency (f)

0 3

1 9

2 18

3 25

4 20

5 10

6 8

7 4

8 2

9 1

Fit a Poisson distribution to this data and perform a chi-square test for goodness of fit.

Steps in R Software:

Define the problem and the hypothesis:

Here fitting of a Poisson distribution was done with parameter (the average number

of arrivals per hour). Null Hypothesis (H): The data follows a Poisson distribution with

parameter .

Alternative Hypothesis (H): The data does not follow a Poisson distribution.

Input the frequency data into R:

Number of customers (x)
x <- 0:9

Frequency of each number of customers (f)
f <- c(3, 9, 18, 25, 20, 10, 8, 4, 2, 1)

Total number of observations
n_total <- sum(f)

Statistical Computing Using R 12.5 R-codes for fitting distributions

Estimate lambda (mean of the observed data)
lambda <- sum(x * f) / n_total

Calculate the theoretical probabilities using the Poisson Distribution:

To compute the expected frequencies under the Poisson distribution, Poisson
probability mass function was utilized. For each possible number of customers (0 to 9), the

probability had been calculated using the estimated parameter .

Calculate Poisson probabilities for each number of customers
probabilities <- dpois(x, lambda)

Calculate expected frequencies based on the probabilities
expected_frequencies <- probabilities * n_total

Chi-square goodness of fit test:

Now, chi-square goodness of fit test was used to compare the observed frequencies
with the expected frequencies. The test statistic is calculated as:

where are the observed frequencies and are the expected frequencies.

Calculate the chi-square statistic
chi_square_stat <- sum((f - expected_frequencies)^2 / expected_frequencies)

Calculate the degrees of freedom (df = number of categories - 1 - parameters estimated)
df <- length(x) - 1 - 1 # 1 parameter (lambda) is estimated

Calculate the p-value using the chi-square distribution
p_value <- pchisq(chi_square_stat, df, lower.tail = FALSE)

Output the results
chi_square_stat
p_value

Interpret the results:

If the p-value of Chi-square Statistic is greater than 0.05, fail to reject the null
hypothesis, suggesting that the data follows a poisson distribution. If the p-value is less than

Center for Distance Education 12.6 Acharya Nagarjuna University

0.05, can reject the null hypothesis and conclude that the data does not follow a poisson
distribution.

12.3 FITTING OF NORMAL DISTRIBUTION BASED ON FREQUENCY DATA
AND TEST FOR GOODNESS OF FIT:

Introduction:

In this, Normal distribution was fitted and tested for goodness of fit using a real-world
example. The Normal distribution is commonly used to model continuous data that tends to
cluster around a central value.

Example question:

Suppose the heights of a group of students and record their frequencies in different
height ranges were measured and the following data represents the number of students within
each height interval:

Height Range (cm) Frequency (f)

140-150 5

150-160 12

160-170 18

170-180 22

180-190 16

190-200 7

Fit a Normal distribution to this data and perform a chi-square test for goodness of fit.

Steps in R software:

Define the problem and the hypothesis:

Here, an attempt was made to fit a Normal distribution with parameters (mean) and

 (standard deviation).

Null Hypothesis (H): The data follows a Normal distribution with parameters and .

Alternative Hypothesis (H): The data does not follow a Normal distribution.

Input the frequency data into R:

Midpoints of height ranges
x <- c(145, 155, 165, 175, 185, 195)

Frequency of each height range
f <- c(5, 12, 18, 22, 16, 7)

Total number of observations
n_total <- sum(f)

Statistical Computing Using R 12.7 R-codes for fitting distributions

Estimate mean and standard deviation
mu <- sum(x * f) / n_total
sigma <- sqrt(sum(f * (x - mu)^2) / n_total)

Calculate the theoretical probabilities using the Normal Distribution:

To compute the expected frequencies under the Normal distribution, the cumulative
distribution function (CDF) was used to determine the probability of data falling within each
interval.

Calculate probabilities for each interval using normal CDF
probabilities <- pnorm(c(150, 160, 170, 180, 190, 200), mean = mu, sd = sigma)-
pnorm(c(140, 150, 160, 170, 180, 190), mean = mu, sd = sigma)

Calculate expected frequencies based on the probabilities
expected_frequencies <- probabilities * n_total

Chi-square goodness of fit test:

Now, the chi-square goodness of fit test was used to compare the observed
frequencies with the expected frequencies. The test statistic is calculated as:

where are the observed frequencies and are the expected frequencies.

Calculate the chi-square statistic
chi_square_stat <- sum((f - expected_frequencies)^2 / expected_frequencies)

Calculate the degrees of freedom (df = number of categories - 1 - parameters estimated)
df <- length(x) - 1 - 2 # 2 parameters (mu, sigma) are estimated

Calculate the p-value using the chi-square distribution
p_value <- pchisq(chi_square_stat, df, lower.tail = FALSE)

Output the results
chi_square_stat
p_value

Center for Distance Education 12.8 Acharya Nagarjuna University

Conclusion:

If the p-value of Chi-square Statistic is greater than 0.05, we fail to reject the null
hypothesis, suggesting that the data follows a Normal distribution. If the p-value is less than
0.05, can reject the null hypothesis and conclude that the data does not follow a Normal
distribution.

12.4 FITTING OF EXPONENTIAL DISTRIBUTION BASED ON FREQUENCY
DATA AND TEST FOR GOODNESS OF FIT:

Introduction:

In this lesson, the Exponential distribution will be fitting along test for goodness of fit
using a real-world example. The Exponential distribution is commonly used to model the
time between events in a Poisson process, such as the waiting time between arrivals.

Example question:

Suppose we measure the time (in minutes) between customer arrivals at a service
center and record their frequencies within different time intervals. The following data
represents the number of customers arriving within each interval:

Time Interval (minutes) Frequency (f)

0-2 10

2-4 18

4-6 22

6-8 16

8-10 9

10-12 5

Fit an Exponential distribution to this data and perform a chi-square test for goodness of fit.

Steps in R Software:

Null Hypothesis (H): The data follows an Exponential distribution with parameter .

Alternative Hypothesis (H): The data does not follow an Exponential distribution.

Input the frequency data into R:

Midpoints of time intervals
x <- c(1, 3, 5, 7, 9, 11)

Frequency of each interval
f <- c(10, 18, 22, 16, 9, 5)

Total number of observations
n_total <- sum(f)

Estimate lambda (1 / mean of observed data)
lambda <- 1 / (sum(x * f) / n_total)

Statistical Computing Using R 12.9 R-codes for fitting distributions

Calculate the theoretical probabilities using the Exponential Distribution:

To compute the expected frequencies under the Exponential distribution, the
cumulative distribution function (CDF) was used to determine the probability of data falling
within each interval.

Calculate probabilities for each interval using exponential CDF
probabilities <- pexp(c(2, 4, 6, 8, 10, 12), rate = lambda) -
 pexp(c(0, 2, 4, 6, 8, 10), rate = lambda)

Calculate expected frequencies based on the probabilities
expected_frequencies <- probabilities * n_total

Chi-square goodness of fit test:

Now, the chi-square goodness of fit test was used to compare the observed
frequencies with the expected frequencies. The test statistic is calculated as:

where are the observed frequencies and are the expected frequencies.

Calculate the chi-square statistic
chi_square_stat <- sum((f - expected_frequencies)^2 / expected_frequencies)

Calculate the degrees of freedom (df = number of categories - 1 - parameters estimated)
df <- length(x) - 1 - 1 # 1 parameter (lambda) is estimated

Calculate the p-value using the chi-square distribution
p_value <- pchisq(chi_square_stat, df, lower.tail = FALSE)

Output the results
chi_square_stat
p_value

Interpret the results:

If the p-value of Chi-square Statistic is greater than 0.05, fail to reject the null
hypothesis, suggesting that the data follows a exponential distribution. If the p-value is less
than 0.05, can reject the null hypothesis and conclude that the data does not follow a
exponential distribution.

Center for Distance Education 12.10 Acharya Nagarjuna University

12.5 FITTING OF WEIBULL DISTRIBUTION BASED ON FREQUENCY DATA
AND TEST FOR GOODNESS OF FIT:

Introduction:

The Weibull distribution is commonly used in reliability analysis and life data
modeling, making it a useful tool for analyzing failure times and survival data.

Example question:

Suppose there a measure related the lifetimes (in hours) of a mechanical component
having frequencies within different time intervals. The following data represents the number
of components failing within each time interval:

Lifetime Interval (hours) Frequency (f)

0-50 8

50-100 14

100-150 20

150-200 25

200-250 18

250-300 10

Fit a Weibull distribution to this data and perform a chi-square test for goodness of fit.

Steps in R software:

1. Define the problem and the hypothesis:

Fit a Weibull distribution with parameters (shape) and (scale).

Null Hypothesis (H): The data follows a Weibull distribution with parameters and .

Alternative Hypothesis (H): The data does not follow a Weibull distribution.

2. Input the frequency data into R:

Midpoints of lifetime intervals
x <- c(25, 75, 125, 175, 225, 275)

Frequency of each interval
f <- c(8, 14, 20, 25, 18, 10)

Total number of observations
n_total <- sum(f)

3. Estimate the Weibull parameters:

fitdistrplus package was used here to estimate the Weibull distribution parameters.

Load required package
library(MASS)

Statistical Computing Using R 12.11 R-codes for fitting distributions

library(fitdistrplus)

Fit Weibull distribution
weibull_fit <- fitdist(rep(x, f), "weibull")
alpha <- weibull_fit$estimate["shape"]
beta <- weibull_fit$estimate["scale"]

4. Calculate the theoretical probabilities using the Weibull distribution:

To compute the expected frequencies under the Weibull distribution, the cumulative
distribution function (CDF) was used to determine the probability of data falling within each
interval.

Calculate probabilities for each interval using Weibull CDF
probabilities <- pweibull(c(50, 100, 150, 200, 250, 300), shape = alpha, scale = beta) -
 pweibull(c(0, 50, 100, 150, 200, 250), shape = alpha, scale = beta)

Calculate expected frequencies based on the probabilities
expected_frequencies <- probabilities * n_total

5. Chi-square goodness of fit test:

Now, the chi-square goodness of fit test was employed to compare the observed
frequencies with the expected frequencies. The test statistic is calculated as:

where are the observed frequencies and are the expected frequencies.

Calculate the chi-square statistic
chi_square_stat <- sum((f - expected_frequencies)^2 / expected_frequencies)

Calculate the degrees of freedom (df = number of categories - 1 - parameters estimated)
df <- length(x) - 1 - 2 # 2 parameters (alpha, beta) are estimated

Calculate the p-value using the chi-square distribution
p_value <- pchisq(chi_square_stat, df, lower.tail = FALSE)

Output the results
chi_square_stat
p_value

6. Interpret the results:

If the p-value of Chi-square Statistic is greater than 0.05, fail to reject the null
hypothesis, suggesting that the data follows weibull distribution. If the p-value is less than

Center for Distance Education 12.12 Acharya Nagarjuna University

0.05, can reject the null hypothesis and conclude that the data does not follow weibull
distribution.

12.6 FITTING OF LOGISTIC DISTRIBUTION BASED ON FREQUENCY DATA
AND TEST FOR GOODNESS OF FIT:

Introduction:

In this lesson, we will apply the Logistic distribution fitting and test for goodness of
fit using a real-world example. The Logistic distribution is often used in modeling growth
processes and extreme value distributions. We will also perform a chi-square test to evaluate
the goodness of fit.

Example question:

Suppose we measure the weight gain (in kg) of a group of individuals over a period
and record their frequencies within different weight gain intervals. The following data
represents the number of individuals gaining weight within each interval:

Weight Gain Interval (kg) Frequency (f)

0-5 10

5-10 18

10-15 22

15-20 20

20-25 15

25-30 8

Fit a Logistic distribution to this data and perform a chi-square test for goodness of fit.

Steps in R software:

Define the problem and the hypothesis:

We are fitting a Logistic distribution with parameters (location) and (scale). We
will test if the data fits a Logistic distribution using a chi-square test.

Null Hypothesis (H): The data follows a Logistic distribution with parameters and .

Alternative Hypothesis (H): The data does not follow a Logistic distribution.

Input the frequency data into R:

Midpoints of weight gain intervals
x <- c(2.5, 7.5, 12.5, 17.5, 22.5, 27.5)

Frequency of each interval
f <- c(10, 18, 22, 20, 15, 8)

Total number of observations
n_total <- sum(f)

Statistical Computing Using R 12.13 R-codes for fitting distributions

Estimate the Logistic parameters:

We use the fitdistrplus package to estimate the Logistic distribution parameters.

Load required package
library(MASS)
library(fitdistrplus)

Fit Logistic distribution
logistic_fit <- fitdist(rep(x, f), "logis")
mu <- logistic_fit$estimate["location"]
sigma <- logistic_fit$estimate["scale"]

Calculate the theoretical probabilities using the Logistic Distribution:

To compute the expected frequencies under the Logistic distribution, we use the
cumulative distribution function (CDF) to determine the probability of data falling within
each interval.

Calculate probabilities for each interval using Logistic CDF
probabilities <- plogis(c(5, 10, 15, 20, 25, 30), location = mu, scale = sigma) -plogis(c(0, 5,
10, 15, 20, 25), location = mu, scale = sigma)

Calculate expected frequencies based on the probabilities
expected_frequencies <- probabilities * n_total

Chi-square goodness of fit test:

Now, we perform the chi-square goodness of fit test to compare the observed
frequencies with the expected frequencies. The test statistic is calculated as:

where are the observed frequencies and are the expected frequencies.

Calculate the chi-square statistic
chi_square_stat <- sum((f - expected_frequencies)^2 / expected_frequencies)

Calculate the degrees of freedom (df = number of categories - 1 - parameters estimated)
df <- length(x) - 1 - 2 # 2 parameters (mu, sigma) are estimated

Calculate the p-value using the chi-square distribution
p_value <- pchisq(chi_square_stat, df, lower.tail = FALSE)

Output the results
chi_square_stat
p_value

Center for Distance Education 12.14 Acharya Nagarjuna University

Interpret the results:

If the p-value is greater than 0.05, fail to reject the null hypothesis, suggesting that the
data follows a Logistic distribution. If the p-value is less than 0.05, reject the null hypothesis
and conclude that the data does not follow a Logistic distribution.

12.7 SOLVING NON-LINEAR EQUATIONS USING NEWTON-RAPHSON
METHOD IN R:

Introduction:

The Newton-Raphson method is an iterative technique used for finding the roots of a

nonlinear equation . The general form of the Newton-Raphson formula is:

Where:

 is the current estimate.

 is the function value at .

 is the derivative of at .

Problem statement:

We will solve the equation:

using the Newton-Raphson method.

Step 1: Define the function and its derivative

In R, we define the function and its derivative :

Define the function f(x)
f <- function(x) {
 return (x^3 - 4*x - 9)
}

Define the derivative f'(x)
f_prime <- function(x) {
 return (3*x^2 - 4)
}

Step 2: Implement the Newton-Raphson Method

We create a function in R to implement the Newton-Raphson method:

newton_raphson <- function(x0, tol = 1e-6, max_iter = 100) {
 x <- x0 # Initial guess
 iter <- 0

Statistical Computing Using R 12.15 R-codes for fitting distributions

 while (abs(f(x)) > tol && iter < max_iter) {
 x_new <- x - f(x) / f_prime(x) # Newton-Raphson formula
 iter <- iter + 1
 cat("Iteration:", iter, "x =", x_new, "\n") # Print each iteration

 # Check for convergence
 if (abs(x_new - x) < tol) {
 break
 }

 x <- x_new # Update x
 }

 return(x)
}

Step 3: Choose an initial guess

Newton-Raphson requires an initial guess . We assume:

Run the function:

root <- newton_raphson(2) # Initial guess x0 = 2
cat("Approximate Root:", root, "\n")

Step 4: Step-by-step execution with explanation

Let’s break down the calculations for each iteration.

Iteration 1:

 Compute new :

Iteration 2:

 Compute new :

Center for Distance Education 12.16 Acharya Nagarjuna University

Iteration 3:

 Compute new :

Iteration 4:

 (very close to zero, so we stop)

Final approximate root

The method stops when tolerance (e.g.,). The approximate root found is:

Expected output in R

Iteration: 1 x = 3.125
Iteration: 2 x = 2.769
Iteration: 3 x = 2.709
Iteration: 4 x = 2.4803
Approximate Root: 2.4803

This means the equation has a root near 2.4803.

12.8 CONCLUSION:

 The Newton-Raphson method iteratively refines the root estimate.
 Convergence depends on the choice of the initial guess.

 The method works well when near the root.
 The final root approximation is obtained within the specified tolerance.

12.9 SELF ASSESSMENT QUESTIONS:

1. Write an R script to compute and plot the Probability Mass Function (PMF) and
Cumulative Distribution Function (CDF) for a Poisson distribution with a given rate
parameter (λ)=4and consider x values from 0 to 15.

2. Write an R script to compute and plot the Probability Density Function (PDF),
Cumulative Distribution Function (CDF), quantile and 20 random generating samples
inExponential Distributionwith a given rate parameter (λ) = 2.

3. Write the R code for the
a) Shapiro-Wilk test

b) Kolmogorov-Smirnov test for two-sample case

Statistical Computing Using R 12.17 R-codes for fitting distributions

c) Wilcoxon Mann-Whitney U- test

d) Chi-square tests for association and goodness of fit.

4. Write the R code for fitting of Weibull Distribution based on frequency data and test
for goodness of fit. For example, there a measure related the lifetimes (in hours) of a
mechanical component having frequencies within different time intervals. The
following data represents the number of components failing within each time interval:

Lifetime Interval (hours) Frequency (f)

0-50 8

50-100 14

100-150 20

150-200 25

200-250 18

250-300 10

5. Write the R code for fitting of Logistic Distribution based on frequency data and test
for goodness of fit. For example, the weight gain (in kg) of a group of individuals
over a period and record their frequencies within different weight gain intervals. The
following data represents the number of individuals gaining weight within each
interval:

Weight Gain Interval (kg) Frequency (f)

0-5 10

5-10 18

10-15 22

15-20 20

20-25 15

25-30 8

6. Solve a non-linear equation using Newton-Raphson method
in R.

12.10 FURTHER READINGS:

1) Dr. Mark Gardener (2012): Beginning R – The Statistical Programming Language,

2) Wiley India Pvt Ltd.
3) W. N. Venables and D. M. Smith(2016): An Introduction to R

4) J.P. Lander(2014):R for Everyone, Pearson Publications

5) Garrett Grolemund : Hands-On Programming with R

6) Michael J. Crawley: The R Book

Dr. D. Ramesh

 LESSON -13
R-GRAPHICS

OBJECTIVES:

 To understand the concept and importance of data visualization in R.

 To explore and apply different graphical techniques like histograms, scatter plots, and
box plots.

 To learn customization techniques (colors, labels, titles) to enhance R graphics.

 To compare various plotting methods and determine their suitability for different
types of data.

STRUCTURE:

13.1 Introduction

13.2 High-Level Plotting Functions

13.3 Scatter Plots

13.4 Box-Whisker Plots

13.5 Bar Plots

13.6 Dot Plots

13.7 Line Charts In R: Numeric and Categorical Data

13.8 Line Chart with Numeric Data

13.9 Line Chart with Categorical Data

13.10 Combined Line Chart

13.11 Charts In R: Pie Charts, Bar Charts, Q-Q Plots, and Curves

13.12 Pie Charts

13.13 Bar Charts

13.14 Q-Q Plots

13.15 Curves

13.16 Summary

13.17 Self-Assessment Questions

13.18 Suggested Readings

13.1 INTRODUCTION:

This unit introduces R's powerful graphics capabilities, covering both high-level and
low-level plotting functions, customization options, and statistical applications. The goal is to
effectively visualize data for analysis and interpretation.

Centre for Distance Education 13.2 Acharya Nagarjuna University

13.2 HIGH-LEVEL PLOTTING FUNCTIONS:

High-level plotting functions are designed to quickly create complete visualizations of
data. These functions allow for a variety of plots, including histograms, scatter plots, box-
whisker plots, bar plots, dot plots, line charts, pie charts, and Q-Q plots.

13.2.1 HISTOGRAMS

Histograms are graphical representations of the frequency distribution of numeric data.
Unlike bar plots, histograms are designed for continuous data and divide the data into
intervals or "bins." The height of each bar reflects the number of data points falling within
each bin.

Histograms are useful for:
 Understanding the overall shape of the data distribution (e.g., normal, skewed).
 Detecting outliers, gaps, and clusters.
 Comparing distributions of different datasets.

Histograms are used to visualize the frequency distribution of numeric data. In R, the hist()
function provides a simple way to generate histograms with customizable options for binning,
coloring, and labeling.

13.2.2 Syntax:

hist(x, breaks, main, xlab, ylab, col, border, ...)
 x: A numeric vector containing the data values.
 breaks: Specifies the number of bins or intervals.
 main: Title of the histogram.
 xlab/ylab: Labels for the X-axis and Y-axis.
 col: Fill color for the bars.
 border: Color for the borders of the bars.

13.2.3 R Code Example

Generate random data following a normal distribution
data <- rnorm(100, mean =50, sd =10)
Create a histogram
hist(data, main ="Histogram of Data", xlab ="Values",
 col ="blue",
 border ="black")

Below is the histogram created using the above code. The data values (grouped into intervals)
are shown on the X-axis, and their frequencies are displayed on the Y-axis:

Statistical Computing Using R 13.3 R Graphics High-Level Plotting

13.2.4 Explanation of Code

1. rnorm(100, mean = 50, sd = 10): Creates 100 random values from a
normal distribution with a mean of 50 and standard deviation of 10.

2. hist(): Generates the histogram:
o main = "Histogram of Data": Sets the title of the plot.
o xlb = "Values": Adds a label to the X-axis.
o col = "blue": Fills the bars with blue color.
o border = "black": Outlines the bars with a black border.

13.2.5 Applications

 Helps identify the data's shape (e.g., normal, skewed).
 Useful in spotting outliers, clusters, and gaps.
 Aids in comparing data distributions.

13.3 SCATTER PLOTS:

Scatter plots visualize the relationship between two continuous variables. Each point on
the plot represents a pair of values from the dataset. Scatter plots help in:
 Identifying trends (e.g., positive, negative, or no correlation).
 Spotting clusters or groups in data.
 Detecting outliers or anomalies.

13.3.1 Syntax

plot(x, y, main, xlab, ylab, col, pch, ...)
 x, y: Numeric vectors for the X and Y axes.
 main: Title of the plot.
 xlab/ylab: Axis labels.
 col: Point color.
 pch: Point style (e.g., circle, triangle).

13.3.2 R Code Example

Generate random data

Centre for Distance Education 13.4 Acharya Nagarjuna University

x <- rnorm(50)
y <- 2 * x + rnorm(50)
Create a scatter plot
plot(x, y, main ="Scatter Plot", xlab ="X-axis",
 ylab ="Y-axis",
 col ="red",
 pch =16)

13.3.3 Applications

 Understanding relationships (e.g., linear or non-linear).
 Identifying clusters or grouping patterns.
 Detecting outliers or anomalies.

13.4 BOX-WHISKER PLOTS:

Box-whisker plots (box plots) provide a summary of the data distribution by displaying
the median, quartiles, and potential outliers. Each box represents the interquartile range
(IQR), while whiskers extend to the smallest and largest values within 1.5 times the IQR.
Box plots are particularly useful for:

 Comparing distributions across multiple groups.
 Identifying outliers and variability.
 Visualizing the central tendency and spread of data.

13.4.1 Syntax

boxplot(x, main, xlab, ylab, col, border, ...)
 x: Data vector or a formula (e.g., values ~ group).
 main: Title of the plot.
 xlab/ylab: Axis labels.
 col: Fill color of boxes.
 border: Border color.

Statistical Computing Using R 13.5 R Graphics High-Level Plotting

13.4.2 R Code Example

Generate grouped data
group <-rep(c("A","B","C"), each =10)
values <-c(rnorm(10,5), rnorm(10,6), rnorm(10,7))
Create a boxplot
boxplot(values ~ group, main ="Box-Whisker Plot Example",
 xlab ="Group", ylab ="Values",
 col =c("cyan","magenta","yellow"))

13.4.2 Applications

 Comparing distributions between groups.
 Identifying outliers.
 Analyzing variability within and across groups.

13.5 BAR PLOTS:

Bar plots are graphical representations of categorical data using rectangular bars. The
length or height of the bars corresponds to the frequency or magnitude of the category. Bar
plots are ideal for:

 Visualizing categorical comparisons.
 Summarizing grouped data.
 Displaying survey results or counts.

13.5.1 Syntax

barplot(height, names.arg, col, main, xlab, ylab, ...)
 height: Numeric vector of bar heights.
 names.arg: Labels for the bars.
 col: Bar fill color.
 main: Title of the plot.
 xlab/ylab: Axis labels.

Centre for Distance Education 13.6 Acharya Nagarjuna University

13.5.2 R Code Example

Data for bar plot
values <-c(5,10,15,20)
labels <-c("A","B","C","D")
Create a bar plot
barplot(values, names.arg = labels, col ="lightblue",
 main ="Bar Plot Example", xlab ="Categories",
 ylab ="Values")

13.5.3 Applications

 Visualizing categorical comparisons.
 Highlighting frequencies or counts for categories.
 Summarizing survey responses or grouped data.

13.6 DOT PLOTS:

Dot plots are simple graphs where each data point is represented by a dot along an
axis. They are particularly useful for displaying the distribution of small datasets or
comparing values across categories. Dot plots provide a clear view of individual
observations.

13.6.1 Syntax

stripchart(x, method, main, xlab, ylab, col, ...)
Key Parameters:

 x: Numeric vector of data.
 method: Method of plotting (e.g., "stack", "jitter", "overplot").
 main: Title of the plot.
 xlab/ylab: Axis labels.
 col: Color of dots.

13.6.2 R Code Example

Generate data
values <-c(5,7,7,10,15,15,15,20)

Statistical Computing Using R 13.7 R Graphics High-Level Plotting

Create a dot plot
stripchart(values,
 method ="stack", main ="Dot Plot Example",
 xlab ="Values", col ="darkgreen",
 pch =19)

13.6.3 Applications

 Small Data Analysis: Display individual observations.
 Highlighting Clusters: Spot repeated values.
 Comparison: Compare data across categories.

13.7 LINE CHARTS IN R: NUMERIC AND CATEGORICAL DATA:

Line charts are one of the most common and effective tools for visualizing data trends
over time or across categories. They are particularly useful for highlighting patterns, changes,
and comparisons in datasets. In R, creating line charts is straightforward and flexible,
allowing for extensive customization of styles, labels, and additional elements like legends
and grids. Whether you are working with purely numeric data or categorical variables, R
provides functions that can handle both types seamlessly.

This guide explains the process of creating line charts for numeric and categorical
data, including practical examples and syntax breakdowns. By the end, you will be able to
create customized line charts suitable for your specific analysis and presentation needs.

13.8 LINE CHART WITH NUMERIC DATA:

A line chart with numeric data connects points where both x and y values are numeric.

13.8.1 Syntax

plot(x, y, type = "o", col = "color", lwd = line_width, pch =
point_type,
 xlab = "X-axis Label", ylab = "Y-axis Label", main =
"Title")

Centre for Distance Education 13.8 Acharya Nagarjuna University

 x: Numeric vector specifying x-coordinates.
 y: Numeric vector specifying y-coordinates.
 type: Defines the plot type:

o "l": Lines only.
o "p": Points only.
o "o": Both points and lines.

 col: Line and point color.
 lwd: Line width.
 pch: Point type (e.g., 16 for filled circles).
 xlab, ylab, main: Labels for the axes and title.

13.8.2 Example

Numeric Data Example
x <- 1:10 # Numeric x-coordinates
y <- c(2, 5, 7, 8, 4, 6, 9, 10, 8, 7) # Numeric y-coordinates
Create Line Chart
plot(x, y, type = "o", col = "blue", lwd = 2, pch = 16,
 xlab = "X-Axis (Numeric)", ylab = "Y-Axis (Numeric)",
main = "Line Chart - Numeric Data")

13.9 LINE CHART WITH CATEGORICAL DATA:

For categorical data, the x-axis represents categories, and the y-axis shows numeric
values. Categories must be handled as factors or displayed using custom axis labels.

13.9.1 Syntax

plot(values, type = "o", col = "color", lwd = line_width, pch
= point_type,
 xaxt = "n", xlab = "X-axis Label", ylab = "Y-axis Label",
main = "Title")
axis(1, at = 1:length(categories), labels = categories)

 values: Numeric y-values corresponding to categories.
 xaxt = "n": Suppresses default x-axis.
 axis(): Customizes the x-axis:

Statistical Computing Using R 13.9 R Graphics High-Level Plotting

o 1: Bottom axis.
o at: Positions for axis labels.
o labels: Text for axis labels.

13.9.2 Example

Categorical Data Example
Categories<-c("A","B","C","D","E") # Categorical x-coordinates
values <- c(3, 5, 2, 8, 7) # Numeric y-coordinates
Create Line Chart
plot(values, type = "o", col = "darkgreen", lwd = 2, pch = 16,
 xaxt = "n", xlab = "Categories", ylab = "Values", main =
"Line Chart - Categorical Data")
Add Category Labels
axis(1, at = 1:length(categories), labels = categories)

13.10 COMBINED LINE CHART:

You can combine multiple data series in a single line chart to compare trends.

13.10.1 Syntax

plot(x, y1, type = "o", col = "color1", lwd = line_width1, pch
= point_type1,xaxt = "n", xlab = "X-axis Label", ylab =
"Y-axis Label", main = "Title")
lines(x, y2, type = "o", col = "color2", lwd = line_width2,
pch = point_type2)
axis(1, at = 1:length(categories), labels = categories)
legend("position", legend = c("Label1", "Label2"), col =
c("color1", "color2"),
 pch = c(point_type1, point_type2), lty = 1)

Centre for Distance Education 13.10 Acharya Nagarjuna University

13.10.2 Example

Data for Combined Line Chart
categories <- c("A", "B", "C", "D", "E")
numeric_x <- 1:5
values1 <- c(3, 5, 2, 8, 7) # Numeric y-values for series 1
values2 <- c(4, 6, 3, 7, 5) # Numeric y-values for series 2
Create Line Chart
plot(numeric_x, values1, type = "o", col = "blue", lwd = 2,
pch = 16,xaxt = "n", xlab = "Categories", ylab = "Values",
main = "Combined Line Chart")
lines(numeric_x, values2, type = "o", col = "red", lwd = 2,
pch = 17)

Add Category Labels
axis(1, at = numeric_x, labels = categories)

Add Legend
legend("topright", legend = c("Series 1", "Series 2"), col =
c("blue", "red"),
 pch = c(16, 17), lty = 1)

13.11 CHARTS IN R: PIE CHARTS, BAR CHARTS, Q-Q PLOTS, AND CURVES:

This section provides a detailed guide on creating Pie Charts, Bar Charts, Q-Q Plots,
and Curves in R, complete with syntax, examples, and additional tips for effective data
visualization. By mastering these charts, you can visually represent data insights in a variety
of contexts.

13.12 PIE CHARTS:

Pie charts are used to represent proportions or percentages of a whole. Each slice of
the pie corresponds to a category's proportion.

Pie charts are a popular way to visualize proportions or percentages of a whole. They
are especially useful for showing how individual parts contribute to the total. Each slice of
the pie represents a specific category, and the size of the slice is proportional to its value.

Statistical Computing Using R 13.11 R Graphics High-Level Plotting

13.12.1 Syntax

pie(x, labels, col, main)
 x: Numeric vector of values to be represented.
 labels: Character vector of category names.
 col: Colors for the slices.
 main: Title for the chart.

13.12.2 Example

Example Data
values <- c(25, 15, 35, 25)
categories <- c("Category A", "Category B", "Category C",
"Category D")

Create Pie Chart
pie(values, labels = categories, col =rainbow(length(values)),
 main = "Pie Chart Example")

13.13 BAR CHARTS:

Bar charts are commonly used for comparing quantities across different categories.
Each bar's height represents the magnitude of the corresponding category. This chart type is
ideal for showing trends or differences between groups.

13.13.1 Syntax

barplot(height, names.arg, col, xlab, ylab, main, beside)
 height: Numeric vector of bar heights.
 names.arg: Character vector of category labels.
 col: Colors for the bars.
 xlab, ylab: Labels for the x-axis and y-axis.
 main: Title for the chart.
 beside: Logical value; if TRUE, bars are side-by-side.

Centre for Distance Education 13.12 Acharya Nagarjuna University

13.13.2 Example

Example Data
values <- c(10, 20, 15, 25)
categories <- c("A", "B", "C", "D")

Create Bar Chart
barplot(values, names.arg = categories, col = "lightblue",
 xlab = "Categories", ylab = "Values", main = "Bar
Chart Example")

13.14 Q-Q PLOTS:

Quantile-Quantile (Q-Q) plots are used to assess whether a dataset follows a specified
theoretical distribution, such as the normal distribution. If the data points align closely with
the reference line, it indicates a good fit to the distribution.

13.14.1 Syntax

qqnorm(y, main)
qqline(y, col, lwd)

 y: Numeric vector of data.
 main: Title for the plot.
 col: Color of the reference line.
 lwd: Width of the reference line.

13.14.2 Example

Example Data
data <- rnorm(100) # Generate random normal data
Create Q-Q Plot
qqnorm(data, main = "Q-Q Plot Example")
qqline(data, col = "red", lwd = 2)

Statistical Computing Using R 13.13 R Graphics High-Level Plotting

13.15 CURVES:

Curves are used to plot mathematical functions or models over a continuous range of
values. They are especially useful for visualizing relationships, trends, or behaviors of
functions.

13.15.1 Syntax

curve(expr, from, to, col, lwd, xlab, ylab, main)
 expr: Expression defining the function.
 from, to: Range for the x-axis.
 col: Color of the curve.
 lwd: Line width of the curve.
 xlab, ylab, main: Labels and title for the plot.

13.15.2 Example

Create Curve
curve(x^2, from = -10, to = 10, col = "blue", lwd = 2,
 xlab = "X", ylab = "Y", main = "Curve Example: y = x^2")

Centre for Distance Education 13.14 Acharya Nagarjuna University

13.16 SUMMARY:

This lesson provides an overview of R’s graphical functions for data visualization,

emphasizing their role in statistical analysis. It explores high-level plotting techniques such as
histograms, scatter plots, box plots, bar charts, and line graphs, which enable comprehensive
data representation. Additionally, low-level functions for customization enhance the
interpretability of these visualizations. The lesson ensures a thorough understanding of R’s
plotting capabilities, outlining their implementation and significance in data analysis. The
conceptual framework of these graphical methods is examined for better comprehension,
demonstrating their effectiveness in representing various data distributions and relationships.

13.17 SELF ASSESSMENT QUESTIONS:

1. What is the primary purpose of high-level plotting functions in R?
2. What parameters are used in the hist() function to customize a histogram in R?
3. What do the x and y vectors represent in the plot() function for creating a scatter plot?
4. What does a box-whisker plot represent, and how can it be useful for understanding

data?
5. Explain how you would modify the barplot() function to display bar heights based on

categorical data.
6. How are dot plots different from histograms and scatter plots?
7. Describe the difference in creating line charts with numeric data versus categorical

data in R.
8. 8.What is the role of the labels parameter in the pie() function, and how does it affect

the chart?
9. How do you use the qqnorm() and qqline() functions to create a Q-Q plot in R?
10. How do you create a curve in R using the curve() function, and what is its purpose?

13.18 SUGGESTED READINGS

1. R Graphics Cookbook by Winston Chang
2. Data Visualization with ggplot2 by Hadley Wickham
3. R for Data Science by Hadley Wickham and Garrett Grolemund
4. Interactive Data Visualization with R by Carson Sievert
5. Data Visualization with ggplot2 by Hadley Wickham
6. The Art of Data Science by Roger D. Peng and Elizabeth Matsui

 Dr. S. BHANU PRAKASH

LESSON -14

R-GRAPHICS

OBJECTIVES:

 To identify how visual representation, enhance data interpretation.
 To explore and apply different graphical techniques like histograms, scatter plots, and

box plots in R.
 To modify colors, labels, titles, and themes for better readability and presentation.
 To evaluate different plotting techniques based on data structure and distribution.

STRUCTURE:

14.1 Introduction

14.2 Overview of Low-Level Plotting Functions

14.3 Adding Lines

14.4 Adding Segments

14.5 Adding Points to Plots

14.6 Adding Polygons to Plots

14.7 Adding Grids to the Plotting Region

14.8 Adding Text Using text()

14.9 Adding Legends Usinglegend()

14.10 Adding Marginal Text Usingmtext()

14.11 Modifying and Adding Axes

14.12 Putting Multiple Plots on a Single Page

14.13 Summary

14.14 Self-Assessment Questions

14.15 Suggested Readings

14.1 INTRODUCTION:

This lesson provides an in-depth look at controlling plot options using low-level
plotting functions in R. These tools allow for precise customization of visualizations,
enabling users to add lines, segments, points, polygons, grids, text, legends, and axes to
existing plots. Additionally, techniques for creating multiple plots on a single page are
discussed.

14.2 OVERVIEW OF LOW-LEVEL PLOTTING FUNCTIONS:

Low-level plotting functions are used to add or modify elements in an existing plot.

Unlike high-level functions that create new plots, low-level functions enhance the current
plotting region.

Centre for Distance Education 14.2 Acharya Nagarjuna University

Common Low-Level Functions

 lines(): Adds connected line segments.
 segments(): Draws line segments between pairs of points.
 points(): Adds individual points.
 polygon(): Adds a filled polygon.
 grid(): Adds a customizable grid.
 text(): Adds text annotations.
 legend(): Adds a legend to the plot.
 mtext(): Adds text in the margins of the plot.
 axis(): Customizes or adds axes to the plot.

14.3 ADDING LINES:

The lines() function in R is a versatile low-level plotting tool that allows you to add
connected line segments to an existing plot. This is particularly useful for enhancing
visualizations, such as overlaying trends, fitting curves, or marking thresholds.

14.3.1 Syntax

lines(x, y, col,lwd,lty, type)
Arguments

 x, y: Numeric vectors specifying the coordinates for the line segments.
 col: The color of the line. This can be specified using names (e.g., "red"),

hexadecimal codes (e.g., "#FF0000"), or functions like rainbow().
 lwd: Line width, with the default being 1. Larger values produce thicker lines.
 lty: Line type, specified as an integer or string. Common types include:

o "solid" (default)
o "dashed"
o "dotted"

 type: The type of line to be drawn. Use "l" for lines or "b" for both lines and points.

14.3.2 :R Code Example(Adding a Simple Line)

x <- 1:10
y <- x^2
plot(x, y, type ="n", main ="Simple Line Example",xlab="X-Axis",ylab="Y-Axis")
lines(x, y, col ="blue",lwd=2,lty="solid")
This example generates a plot with a simple blue line representing the quadratic relationship.

Statistical Computing Using R 14.3 R Graphics

14.3.3:R Code Example(Overlaying Multiple Lines)

x <-seq(0,2*pi,length.out=100)
y1 <-sin(x)
y2 <-cos(x)
plot(x, y1, type ="n", main ="Overlaying Multiple Lines",xlab="X",ylab="Y")
lines(x, y1, col ="red",lwd=2,lty="dashed")
lines(x, y2, col ="blue",lwd=2,lty="dotted")
legend("topright", legend =c("sin(x)","cos(x)"), col
=c("red","blue"),lty=c("dashed","dotted"))
This demonstrates how to overlay two functions, sin(x) and cos(x), with distinct colors and
line types for clear differentiation.

14.3.4:R Code Example(Customizing Line Appearance)

x <-seq(0,10, by =0.1)
y <-exp(-x)*sin(2*pi* x)
plot(x, y, type ="n", main ="Custom Line Appearance",xlab="Time",ylab="Amplitude")
lines(x, y, col ="purple",lwd=3,lty="dotdash")

Centre for Distance Education 14.4 Acharya Nagarjuna University

This example highlights advanced customization using lwd for thicker lines and lty for a
mixed line pattern.

14.4 ADDING SEGMENTS:

In data visualization, it is often necessary to emphasize specific parts of a plot or connect
points to highlight relationships. The segments() function in R is a powerful tool that allows
you to add straight-line segments to an existing plot. These segments can represent intervals,
thresholds, or transitions, making your visualizations more informative and tailored to your
analytical goals.

The flexibility of segments() allows users to precisely control the appearance and placement
of each segment, making it ideal for annotating plots or illustrating trends. Whether you're
highlighting data ranges, connecting observations, or adding contextual markers, the
segments() function ensures clarity and precision in your graphical output.

14.4.1 Syntax

segments(x0, y0, x1, y1, col,lwd,lty)
Arguments

 x0, y0: Numeric vectors specifying the starting coordinates of the line segments.
 x1, y1: Numeric vectors specifying the ending coordinates of the line segments.
 col: The color of the segments. Colors can be defined using names (e.g., "red"),

hexadecimal codes (e.g., "#FF0000"), or functions like rainbow().
 lwd: Line width. The default value is 1, with larger values creating thicker segments.
 lty: Line type, such as:

o "solid" (default)
o "dashed"
o "dotted"
o "dotdash"

Statistical Computing Using R 14.5 R Graphics

14.4.2: R Code Example(Simple Segments)

plot(1:10,1:10, type ="n", main ="Simple Segments",xlab="X-Axis",ylab="Y-Axis")
segments(x0 =2, y0 =2, x1 =8, y1 =8, col ="blue",lwd=2,lty="solid")

14.4.3: R Code Example(Multiple Segments)

x_start<-c(1,3,5,7)
y_start<-c(2,4,6,8)
x_end<-c(2,4,6,8)
y_end<-c(3,5,7,9)
plot(1:10,1:10, type ="n", main ="Multiple Segments",xlab="X-Axis",ylab="Y-Axis")
segments(x0 =x_start, y0 =y_start, x1 =x_end, y1 =y_end, col ="red",lwd=2,lty="dashed")

14.4.4: R Code Example(Highlighting a Range)

x <-seq(1,10, by =1)
y <- x^2
plot(x, y, type ="b", main ="Highlighting a Range",xlab="X-Axis",ylab="Y-Axis")
segments(x0 =3, y0 =9, x1 =7, y1 =49, col ="green",lwd=3,lty="dotdash")

Centre for Distance Education 14.6 Acharya Nagarjuna University

14.5 ADDING POINTS TO PLOTS:

Points play a fundamental role in data visualization, serving as the building blocks of
scatterplots, line graphs, and other graphical representations. The points() function in R is a
low-level plotting function that allows you to add individual or multiple points to an existing
plot. This makes it a versatile tool for customizing visualizations, such as overlaying
additional data, marking specific observations, or enhancing plot clarity.
By leveraging the extensive customization options available in the points() function, such as
controlling the size, color, and shape of points, you can create precise and informative plots
tailored to your needs.

14.5.1 Syntax

points(x, y, col,pch,cex)
Arguments

 x, y: Coordinates of the points to be added.
 col: Point color. Accepts color names (e.g., "red") or codes (e.g., "#FF0000").
 pch: Point character or symbol type. Common options include:

o 16: Solid circle (default).
o 1: Hollow circle.
o 2: Triangle.
o 3: Plus symbol.

 cex: Scaling factor for the size of points. The default value is 1.

14.5.2: R Code Example(Adding Simple Points)

plot(1:10,(1:10)^2, type ="n", main ="Adding Points",xlab="X-Axis",ylab="Y-Axis")
points(x=1:10, y=(1:10)^2, col="blue",pch=16,cex=1.5)

Statistical Computing Using R 14.7 R Graphics

14.5.3: R Code Example(Highlighting Specific Points)

x <- 1:10
y <- x^2
plot(x, y, type ="b", main ="Highlighting Points")
points(5,25,col="red",pch=19,cex=2)# Highlight (5, 25)

14.5.4: R Code Example(Customizing Multiple Points)

x <- 1:10
y <- x^2
plot(x, y, type ="n", main ="Customizing Points",xlab="X",ylab="Y")
points(x, y, col = rainbow(10),pch=1:10,cex=seq(1,2,length.out=10))

Centre for Distance Education 14.8 Acharya Nagarjuna University

14.6 ADDING POLYGONS TO PLOTS:

Polygons are versatile graphical elements used to represent areas, boundaries, or regions on a
plot. In R, thepolygon() function allows you to draw filled shapes defined by a series of
vertices. This makes it an essential tool for highlighting specific regions, creating shaded
areas, or representing geometric shapes in your visualizations.

The polygon() function is particularly useful in creating custom visualizations, such as:

 Shading areas under curves or between lines.
 Highlighting specific data ranges or regions.
 Adding geometric shapes for visual emphasis.

By combining polygons with other low-level functions, you can enhance the interpretability
and aesthetic appeal of your plots.

14.6.1 Syntax

polygon(x, y, col, border,lty,lwd, density, angle)
Arguments

 x, y: Coordinates of the vertices defining the polygon.
 col: Fill color of the polygon.
 border: Color of the polygon’s border (use NA for no border).
 lty: Line type for the border (e.g., solid, dashed).
 lwd: Line width for the border.
 density: Line density for shading (in number of lines per inch).
 angle: Angle of the shading lines.

14.6.2: R Code Example(Simple Polygon)

x <-c(1,3,5,2)
y <-c(1,5,3,1)
plot(0:6,0:6, type ="n", main ="Simple Polygon")
polygon(x, y, col ="lightblue", border ="blue",lwd=2)

Statistical Computing Using R 14.9 R Graphics

14.6.3: R Code Example(Shading an Area Under a Curve)

x <-seq(0,2*pi,length.out=100)
y <-sin(x)
plot(x, y, type ="l", main ="Shading Area Under Curve",xlab="X",ylab="Y")
polygon(c(x, rev(x)),c(y,rep(0,length(y))), col ="lightgray", border =NA)
lines(x, y, col ="blue",lwd=2)

14.6.4: R Code Example(Custom Shading)

x <-c(2,4,6,4)
y <-c(2,6,4,2)
plot(0:8,0:8, type ="n", main ="Polygon with Custom Shading")
polygon(x, y, col ="gray", border ="black", density =20, angle =45)

Centre for Distance Education 14.10 Acharya Nagarjuna University

14.7. ADDING GRIDS TO THE PLOTTING REGION:

Grids are a helpful visual element for organizing and aligning plot elements. The grid()
function in R allows you to add a customizable grid to the plotting region, enhancing the
interpretability of data points or patterns. Grids can be used in scatterplots, line graphs, bar
charts, and other visualizations where alignment aids in data comparison.

14.7.1 Syntax

grid(nx,ny, col,lty,lwd)
Arguments

 nx: Number of vertical grid lines. Defaults to NULL, which aligns with major x-axis
ticks.

 ny: Number of horizontal grid lines. Defaults to NULL, which aligns with major y-
axis ticks.

 col: Color of the grid lines (default is light gray).
 lty: Line type (e.g., "solid", "dashed", "dotted").
 lwd: Line width.

Ifnx or ny is NULL, the grid aligns with the existing axis tick marks.

14.7.2: R Code Example(Simple Grid Aligned with Axes)

x <- 1:10
y <- x^2
plot(x, y, type ="o", main ="Plot with Simple Grid", col ="blue",pch=16)
grid(col ="gray",lty="dotted")

Statistical Computing Using R 14.11 R Graphics

This adds a dotted gray grid to the plotting region, aligning with the tick marks on the axes.

14.7.3: R Code Example(Custom Grid with Specified Lines)

x <-seq(0,2*pi,length.out=50)
y <-sin(x)
plot(x, y, type ="l", col ="blue",lwd=2, main ="Custom Grid Example",xlab="X",ylab="Y")
grid(nx=8,ny=6, col ="red",lty="dashed",lwd=0.5)

This example demonstrates a custom grid with 8 vertical and 6 horizontal lines, styled with
red dashed lines.

14.8 ADDING TEXT USING text():

Thetext() function places text at specified coordinates within the plotting region. Text
annotations can highlight key data points, provide additional context, or label specific regions
of a plot. This is often used for labeling specific points or adding descriptions, ensuring the
plot conveys a clear message.

Centre for Distance Education 14.12 Acharya Nagarjuna University

14.8.1 Syntax

text(x, y, labels, col, cex)

 x, y: Coordinates for placing the text.
 labels: Text to display.
 col: Text color.
 cex: Text size.

14.8.2: R Code Example(Annotating a Scatterplot)

x <- 1:10
y <- x^2
plot(x, y, main = "Scatterplot with Text Annotations", col = "blue", pch = 16)
text(5, 50, "This is a point!", col = "red", cex = 1.2)

14.9 ADDING LEGENDS USING legend():

Legends play a crucial role in explaining the meaning of symbols, colors, or line styles used
in a plot. The legend() function creates a descriptive box that enhances the interpretability of
the visualization. Properly labeled legends make complex plots accessible to the audience.

14.9.1 Syntax

legend(x, y, legend, col, pch, lty, bty)
 x, y: Coordinates or position of the legend (e.g., "topright", "bottomleft").
 legend: Vector of labels for the legend.
 col, pch, lty: Colors, point types, and line styles matching the plot.
 bty: Box type (e.g., "o" for a box, "n" for none).

14.9.2:R Code Example(Adding a Legend to a Line Plot)

x <- 1:10
y1 <- x^2
y2 <- x^1.5

Statistical Computing Using R 14.13 R Graphics

plot(x, y1, type = "l", col = "blue", lwd = 2, main = "Plot with Legend")
lines(x, y2, col = "green", lwd = 2)
legend("topright", legend = c("y = x^2", "y = x^1.5"), col = c("blue", "green"), lty = 1)

14.10 ADDING MARGINAL TEXT USING mtext():

The mtext() function is used to place text in the margins of a plot. This feature is particularly
useful for adding axis titles, supplementary information, or labels that do not fit within the
main plotting region. Marginal text adds contextual information, enhancing the overall
presentation.

14.10.1 Syntax

mtext(text, side, line, col)

 text: Text to display.
 side: 1 = bottom, 2 = left, 3 = top, 4 = right.
 line: Line number in the margin.
 col: Text colour.

14.10.2:R Code Example(Adding Axis Labels with mtext())

plot(1:10, (1:10)^2, main = "Marginal Text Example")
mtext("Bottom Axis Label", side = 1, line = 2, col = "blue")
mtext("Left Axis Label", side = 2, line = 2, col = "red")

Centre for Distance Education 14.14 Acharya Nagarjuna University

14.11 MODIFYING AND ADDING AXES:

Axes are essential components of a plot as they provide the framework for interpreting the
data. Theaxis() function allows users to customize or add new axes, improving the clarity and
precision of the visualization. By modifying tick marks, labels, and axis styles, you can make
your plot more informative.

14.11.1 Syntax

axis(side, at, labels, col, lwd)
 side: 1 = bottom, 2 = left, 3 = top, 4 = right.
 at: Locations of tick marks.
 labels: Labels for the tick marks.
 col, lwd: Colors and widths of the axis lines.

14.11.1:R Code Example(Custom Axes)

plot(1:10, (1:10)^2, type = "n", main = "Custom Axes")
axis(1, at = 1:10, labels = letters[1:10], col = "blue")
axis(2, at = seq(0, 100, 20), col = "red")

Statistical Computing Using R 14.15 R Graphics

14.12 PUTTING MULTIPLE PLOTS ON A SINGLE PAGE:

Arranging multiple plots on a single page is a powerful feature for comparative analysis and
presentation. Thepar() function provides the capability to divide the plotting region into
multiple sections, enabling the creation of grid-like layouts for multiple visualizations.

14.12.1 Syntax

par(mfrow = c(nrows, ncols))
 nrows, ncols: Number of rows and columns for the layout.

14.12.2: R Code Example(Four Plots on a Single Page)

par(mfrow = c(2, 2)) # Divide into 2 rows and 2 columns
plot(1:10, (1:10)^2, main = "Plot 1")
plot(1:10, sqrt(1:10), main = "Plot 2")
plot(1:10, log(1:10), main = "Plot 3")
plot(1:10, exp(1:10/10), main = "Plot 4")
par(mfrow = c(1, 1)) # Reset layout to single plot

Centre for Distance Education 14.16 Acharya Nagarjuna University

14.13 SUMMARY:

Data visualization in R is essential for understanding and interpreting data effectively.

It enables users to explore and apply various graphical techniques such as histograms, scatter
plots, and box plots to represent data visually. Customization options like colors, labels, and
titles enhance the clarity and aesthetics of these visualizations. Additionally, comparing
different plotting methods helps in selecting the most suitable approach for various data
types, ensuring accurate and meaningful insights. Mastering these techniques allows for
better data-driven decision-making and improved communication of statistical findings.

14.14 SELF ASSESSMENT QUESTIONS:

1. What is the purpose of low-level plotting functions in R, and how do they differ from
high-level plotting functions?

2. Describe the functionality of the lines() function in R. What arguments can be used to
customize the appearance of the lines? Provide an example where you overlay
multiple lines on the same plot.

3. How does the segments() function enhance a plot? What are the key arguments for
drawing line segments in R, and how can you modify their appearance?

4. Explain the role of the points() function in R. How can you customize the appearance
of individual points in a plot? Provide an example where you highlight specific points.

5. What is the purpose of the polygon() function, and how can it be used to shade areas
or highlight regions in a plot? Provide an example of creating a polygon and adding
shading under a curve.

6. How can you add a customizable grid to a plot using the grid() function? Describe the
arguments involved in modifying the grid's appearance.

7. What are the use cases for adding text annotations in plots using the text() function?
How do you specify the position and appearance of the text? Provide an example
where text is added to annotate a plot.

8. How does the par() function in R allow users to display multiple plots on a single
page? Write an example that arranges four plots in a 2x2 layout.What is the primary
purpose of high-level plotting functions in R?

14.15 SUGGESTED READINGS:

1. R Graphics Cookbook by Winston Chang
2. The Art of R Programming by Norman Matloff
3. R for Data Science by Hadley Wickham and Garrett Grolemund
4. R Graphics by Paul Murrell
5. R in Action by Robert I. Kabacoff
6. The Art of Data Science by Roger D. Peng and Elizabeth Matsui

 Dr. S. BHANU PRAKASH

 LESSON -15

R-GRAPHICS

OBJECTIVES:

1. To understand the Concept of ANOVA.
2. To identify and Verify ANOVA Assumptions.
3. To perform One-Way ANOVA in R.
4. To perform Two-Way ANOVA in R.

STRUCTURE:

15.1 Introduction

15.2 Assumptions of ANOVA

15.3 One-Way ANOVA

15.3.1 Syntax

15.3.2 R Code Example

15.4 One-Way ANOVA

15.4.1 Syntax

15.4.2 R Code Example

15.5 Summary

15.6 Self-Assessment Questions

15.7 Suggested Readings

15.1 INTRODUCTION:

This lesson provides an in-depth overview of performing one-way and two-way ANOVA
using R's built-in functions. ANOVA (Analysis of Variance) is a powerful statistical
technique used to compare means across multiple groups and assess whether the observed
differences are statistically significant. By analyzing the variability within and between
groups, ANOVA allows researchers to draw meaningful conclusions about the factors
influencing their data. R provides robust tools for conducting ANOVA, and this guide covers
the necessary syntaxes, examples, and interpretations.

15.2 ASSUMPTIONS Of ANOVA:

o Normality: Residuals should be normally distributed.
o Homogeneity of Variance: Variances should be equal across groups.
o Independence: Observations should be independent.
Ensure proper experimental design to satisfy this assumption.

Centre for Distance Education 15.2 Acharya Nagarjuna University

15.3 ONE-WAY ANOVA:

One-way ANOVA is used to determine whether there are statistically significant differences
between the means of three or more independent groups. It evaluates the impact of a single
factor (categorical variable) on a continuous response variable. This method is widely used in
experiments and studies where groups are formed based on different treatments or conditions.

15.3.1 Syntax

result <- aov(response_variable ~ factor_variable, data = dataset)
summary(result)

 response_variable: The numeric dependent variable.
 factor_variable: The independent categorical variable (factor).
 dataset: The data frame containing the variables.

15.3.2 R Code Example

Sample data
data <- data.frame(
 treatment = rep(c("A", "B", "C"), each = 10),
 value = c(rnorm(10, mean = 20, sd = 3),
rnorm(10, mean = 25, sd = 3),
rnorm(10, mean = 30, sd = 3))
)

Perform one-way ANOVA
result <- aov(value ~ treatment, data = data)

Summary of ANOVA
summary(result)

Output:
 Df Sum Sq Mean Sq F value Pr(>F)
treatment 2 660.0 330.0 35.7 2.62e-08 ***
Residuals 27 249.6 9.2

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Interpretation:
The summary output includes:

 Degrees of Freedom (Df): Number of independent values in the calculation.
 Sum of Squares (SS): Measures variability.
 Mean Squares (MS): SS divided by Df.
 F-value: Ratio of MS between groups to MS within groups.
 p-value: Indicates if group means differ significantly.

A p-value less than 0.05 suggests significant differences between groups, implying that at
least one group mean is different from the others.

Statistical Computing Using R 15.3 R Graphics ANOVA

15.4 TWO-WAY ANOVA

Two-way ANOVA is used when there are two independent categorical variables (factors) and
one continuous dependent variable. It evaluates:

1. The individual effect of each factor (main effects).
2. The interaction effect between the two factors, showing whether the effect of one

factor depends on the levels of the other factor.
This method is particularly useful in experiments where multiple factors are varied
simultaneously, allowing researchers to explore combined and independent influences on the
response variable.

15.4.1 Syntax

result <- aov(response_variable ~ factor1 * factor2, data = dataset)
summary(result)

 factor1 and factor2: The two independent categorical variables.
 factor1 * factor2: Includes main effects and interaction effects.
 dataset: The data frame containing the variables.

15.4.2 R Code Example

Sample data
data <- data.frame(
 fertilizer = rep(c("Low", "Medium", "High"), each = 10),
 irrigation = rep(c("Low", "High"), times = 15),
 yield = c(rnorm(10, mean = 30, sd = 5),
rnorm(10, mean = 35, sd = 5),
rnorm(10, mean = 40, sd = 5),
rnorm(10, mean = 50, sd = 5),
rnorm(10, mean = 55, sd = 5),
rnorm(10, mean = 60, sd = 5))
)
Perform two-way ANOVA
result <- aov(yield ~ fertilizer * irrigation, data = data)

Summary of ANOVA
summary(result)

Output:
 Df Sum Sq Mean Sq F value Pr(>F)
fertilizer 2 1030 514.8 3.604 0.034 *
irrigation 1 0 0.1 0.000 0.984
fertilizer:irrigation 2 9 4.7 0.033 0.968
Residuals 54 7714 142.9

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Interpretation:
The output provides:

1. Main Effects: The effect offertilizer and irrigation individually.
2. Interaction Effect: Combined effect of fertilizer and irrigation (fertilizer:irrigation).
3. p-values: Significance of main and interaction effects.

Centre for Distance Education 15.4 Acharya Nagarjuna University

A significant interaction effect (p < 0.05) suggests that the effect of one factor depends on the
levels of the other factor. If no interaction is present, the main effects can be interpreted
independently.

15.5 SUMMARY:

This lesson provides a comprehensive guide to performing one-way and two-way

ANOVA in R, covering their assumptions, syntax, implementation, and interpretation.
Learners will understand the importance of ANOVA in comparing group means, ensuring
assumptions like normality and homogeneity of variance are met, and analyzing variability
within and between groups. Using R’s aov() function, they will conduct ANOVA, interpret
key outputs like F-values and p-values, and assess statistical significance. Additionally, they
will explore main and interaction effects in two-way ANOVA, applying these techniques to
real-world scenarios for data-driven decision-making.

15.6 SELF ASSESSMENT QUESTIONS:

1. What are the key assumptions of ANOVA, and why are they important?
2. How does one-way ANOVA differ from two-way ANOVA?
3. How do you interpret the output of summary(aov(response_variable ~ factor_variable,

data = dataset)) in R?
4. Write the R syntax for conducting a two-way ANOVA with two categorical

independent variables and one continuous dependent variable.
5. A researcher performs an ANOVA test and finds a p-value of 0.03. What does this

mean in terms of statistical significance?
6. How can ANOVA results be used for decision-making in real-world scenarios?
7. What post-hoc tests can be used after finding a significant result in ANOVA?

15.7 SUGGESTED READINGS:

1. Discovering Statistics Using R by Andy Field
2. Linear Models with R by Julian J. Faraway
3. Introductory Statistics with R by Peter Dalgaard
4. The R Book by Michael J. Crawley
5. Hands-On Programming with R by Garrett Grolemund
6. Designing Experiments and Analyzing Data: A Model Comparison Perspective by
 Maxwell & Delaney

 Dr. S. BHANU PRAKASH

